细菌纤维素负载金纳米粒子复合膜的制备及催化性能Research on the Preparation and Catalytic Properties of Bacterial Cellulose-Supported Gold Nanoparticles Composite Membrane
陈燕,陈仕艳,姚晶晶,王宝秀,王华平
CHEN Yan,CHEN Shi-yan,YAO Jing-jing,WANG Bao-xiu,WANG Hua-ping
摘要(Abstract):
以细菌纤维素(BC)为基底,氯金酸(HAu Cl4)为金前驱体,通过原位还原法制备了BC负载金纳米粒子(Au NPs)复合膜。采用紫外-可见光谱仪、透射电子显微镜、X射线衍射仪、电感耦合等离子发射光谱仪和傅里叶变换红外光谱仪对复合膜的结构和性质进行了表征,并通过对硝基苯酚(4-NP)催化还原反应来评价Au NPs-BC复合催化剂的催化性能。研究结果表明:复合膜上Au NPs的粒径大小为(5.30±1.23)nm,其反应速率常数高达5.09×10-3s-1,Au NPs-BC催化剂表现出优异的催化活性及重复稳定性。
Bacterial cellulose-supported gold nanoparticles(Au NPs) composite membrane was successfullysynthesized in situ by using bacterial cellulose(BC) as support and chloroauric acid(HAu Cl4) as gold precur-sor. The prepared Au NPs- BC composite membrane was characterized by UV- visible spectral analysistransmission electron microscopy, X-ray diffraction, inductively coupled plasma optical emission spectrom-eter and Fourier transform infrared spectrometer. The catalytic properties of Au NPs-BC composite mem-brane was evaluated with the reduction of 4-nitrophenol(4-NP). The results showed that the average size ofthe Au NPs within BC was(5.30±1.23) nm, and the reaction rate constant was 5.09×10-3s-1. The Au NPs-BCcatalyst showed excellent catalytic activity and high stability for reuse property.
关键词(KeyWords):
细菌纤维素;金纳米粒子;原位还原;催化性能;对硝基苯酚
bacterial cellulose;gold nanoparticle;in situ;catalytic property;4-nitrophenol
基金项目(Foundation): 国家自然科学基金(51573024、51273043)
作者(Author):
陈燕,陈仕艳,姚晶晶,王宝秀,王华平
CHEN Yan,CHEN Shi-yan,YAO Jing-jing,WANG Bao-xiu,WANG Hua-ping
DOI: 10.16090/j.cnki.hcxw.2016.12.005
参考文献(References):
- [1]SANKARAN K J,KUNUKU S,SUNDARAVEL B,et al.Gold nanopar ticle-ultrananocrystalline diamond hybrid structured materials for highperformance optoelectronic device applications[J].Nanoscale,2015,7(10)4377-4385.
- [2]SAHA K,AGASTI S S,KIM C,et al.Gold nanoparticles in chemica and biological sensing[J].Chemical Reviews,2012,112(5):2739-2779.
- [3]DREADEN E C,ALKIAANY A M,HUANG X,et al.The golden age gold nanoparticles for biomedicine[J].Chemical Society Reviews,2012,4(7):2740-2779.
- [4]QIU J,KONG L,CAO X,et al.Dendrimer-entrapped gold nanoparti cles modified withβ-cyclodextrin for enhanced gene delivery application[J].RSC Advances,2016,6(31):25633-25640.
- [5]KIM H Y,LEE H M,HENKELMAN G.CO oxidation mechanism on Ce O2-supported Au nanoparticles[J].Journal of the American Chemica Society,2012,134(3):1560-1570.
- [6]PRIMO A,GARCIA H.Supported gold nanoparticles as heterogeneou catalysts for C-C coupling reactions[J].Gold Catalysis:Preparation,Char acterization,and Applications,2016:389.
- [7]CHANG Y C,CHEN D H.Catalytic reduction of 4-nitrophenol b magnetically recoverable Au nanocatalyst[J].Journal of Hazardous Materi als,2009,165(1):664-669.
- [8]王珍珍,翟尚儒,翟滨,等.基于对硝基苯酚还原模型反应的纳米金催化材料[J].化学进展,2013,26(2/3):234-247.
- [9]CLARK J H.Solid acids for green chemistry[J].Accounts of Chemica Research,2002,35(9):791-797.
- [10]GUIBAL E.Heterogeneous catalysis on chitosan-based materials:review[J].Progress in Polymer Science,2005,30(1):71-109.
- [11]CZAJA W K,YOUNG D J,KAWECKI M,et al.The future prospect of microbial cellulose in biomedical applications[J].Biomacromolecules2007,8(1):1-12.
- [12]汪丽粉,李政,贾士儒,等.细菌纤维素性质及应用的研究进展[J]微生物学通报,2014,41(8):1675-1683.
- [13]LI Z,WANG L,CHEN S,et al.Facilely green synthesis of silve nanoparticles into bacterial cellulose[J].Cellulose,2015,22(1):373-383.
- [14]DAS S K,DICKINSON C,LAFIR F,et al.Synthesis,characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopuso ryzae protein extract[J].Green Chemistry,2012,14(5):1322-1334.
- [15]TOKOH C,TAKABE K,FUJITA M,et al.Cellulose synthesized by Acetobacterxylinum in the presence of acetyl glucomannan[J].Cellulose,1998,5(4):249-261.
- [16]LI Z,FRIEDRICH A,TAUBERT A.Gold microcrystal synthesis via reduction of HAu Cl 4 by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride[J].Journal of Materials Chemistry,2008,18(9):1008-1014.