基于前驱体转化制备孔隙梯度分布的碳化硅纤维Preparation of Silicon Carbide Ceramic Fibers with Gradient Pore Distribution Based on Precursor Conversion
甄霞丽,裴学良,王艳菲,何流,黄政仁,黄庆
ZHEN Xia-li,PEI Xue-liang,WANG Yan-fei,HE Liu,HUANG Zheng-ren,HUANG Qing
摘要(Abstract):
以SiC陶瓷前驱体——聚碳硅烷(PCS)的纤维为原料,经臭氧不熔化和热解至1 600℃获得多孔结构的碳化硅(SiC)纤维。采用扫描电镜、X射线衍射仪、元素分析仪和比表面积与孔径分析仪等研究了臭氧不熔化时间和热解温度对纤维形貌与组成的影响。结果表明:当热解温度从1 300℃提升至1 600℃,SiC纤维呈现出氧元素含量显著降低,比表面积显著增加,形态从无定形转化为结晶形态,以及SiC纤维壁形成多孔结构且孔径从外到内呈梯度缩小等变化;当臭氧不熔化时间为20 min时,所得的多孔结构的SiC纤维还具有中空结构,比表面积为10.45 m~2/g,纤维壁富含尺寸介于2~30 nm的介孔。
Silicon carbide(SiC) fibers with porous structure were prepared from the SiC ceramic precursorpolycarbosilane(PCS)fibers by ozonation curing and then pyrolysis to 1600 ℃. Effects of ozone curing time and pyrolysis temperature on fiber morphology and composition were investigated by SEM, XRD, elemental analyzer and surface area and pore size analyzer. The results showed that when the pyrolysis temperature was raised from 1300 ℃ to 1600 ℃, many obvious changes were found in SiC fibers, such as a significant decrease in oxygen content, a significant increase in specific surface area, the transformation from amorphous to crystalline, the formation of porous structure in the walls, and the gradient reduction in pore size from outside to inside. When the ozone curing time was 20 min, the porous SiC fibers with a specific surface area of 10.45 m~2/g and mesopores in the range of 2~30 nm also had a hollow structure.
关键词(KeyWords):
中空SiC纤维;多孔结构;不熔化程度
hollow SiC fiber;porous structure;curing degree
基金项目(Foundation): 宁波市科技创新2025重大专项(项目编号2019B10091);; 宁波市“3315计划”创新团队项目(项目编号.2018A-03-A)
作者(Author):
甄霞丽,裴学良,王艳菲,何流,黄政仁,黄庆
ZHEN Xia-li,PEI Xue-liang,WANG Yan-fei,HE Liu,HUANG Zheng-ren,HUANG Qing
DOI: 10.16090/j.cnki.hcxw.2021.01.007
参考文献(References):
- [1]DE W P,KAPPERT E J,LOHAUS T,et al.Highly permeable and mechanically robust silicon carbide hollow fiber membranes[J].J Membr Sci,2015,475:480-487.
- [2]DASHTI A,ASGHARI M.Recent progresses in ceramic hollow-fiber membranes[J].ChemBioEng Reviews,2015,2(1):54-70.
- [3]LIU Y N,LIU Y,KIM B S,et al.Highly flexible,erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators[J].J Mater Chem A,2017,5(6):2664-2672.
- [4]HE Z,LIAN P F,SONG Y,et al.Protecting nuclear graphite from liquid fluoride salt and oxidation by SiC coating derived from polycarbosilane[J].J Eur Ceram Soc,2018,38(2):453-462.
- [5]CUONG D V,HOUSSEINOU B,ZORA E B,et al.Silicon carbide foam as a porous support platform for catalytic applications[J].New JChem,2016,40(5):4285-4299.
- [6]CHENG Y L,ZHANG J F,ZHANG Y F,et al.Preparation of hollow carbon and silicon carbide fibers with different cross-sections by using electrospun fibers as templates[J].Eur J Inorg Chem,2009,(28):4248-4254.
- [7]LIU Y W,HOU H L,HE X B,et al.Mesporous 3C-SiC hollow fibers[J].Sci Rep,2017,7(1):1893.
- [8]YAJIMA S,HAYASHI J,OMORI M,et al.Development of a silicon carbide fiber with high tensile strength[J].Nature,1976,261(5562):683-685.
- [9]ISHIKAWA T,KOHTOKU Y,KUMAGAWA K,et al.High-strength alkali-resistant sintered SiC fiber stable to 2,200°C[J].Nature,1998,391(6669):773-775.
- [10]LIU Y,FU Q,LI L,et al.Microstructure and mechanical properties of SiC fibres after exposure at elevated temperature[J].Adv Appl Ceram,2016,115(8):449-456.
- [11]SUGIMOTO M,IDESAKI A,TANAKA S,et al.Development of silicon carbide micro-tube from precursor polymer by radiation oxidation[J]Key Eng Mater,2003,247:133-136.
- [12]SUGIMOTO M.Method for controlling wall thickness of silicon carbide microtube by irradiation under cooling:JP,4665132[P].2006.
- [13]SUGIMOTO M.Process for producing silicon carbide ceramic micro tube with thin wall:US,7964171[P].2011.
- [14]TIAN Q,WU N,WANG B,et al.Fabrication of hollow SiC ultrafine fibers by single-nozzle electrospinning for high-temperature thermal insulation application[J].Mater Lett,2019,239:109-112.
- [15]ZHEN X L,PEI X L,WANG Y F,et al.Crosslinking kinetics of polycarbosilane precursor in ozone atmosphere and theformation mechanism of continuous hollow SiC fiber[J].J Eur Ceram Soc,2019,39(6):2028-2035
- [16]LUO Y G,ZHEN X L,PEI X L,et al.Preparation of hollow SiC ceramic fibre from polycarbosilane fibre by diffusion-controlled cross-linking method[J].Adv Appl Ceram,2020,119(3):166-173
- [17]ZHENG C M,LI X D,WANG H,et al.Preparation and characterization of continuous high-temperature resistant Si-Al-C fibers by one-step method[J].Sci China Ser E:Tech Sci,2008,51(9):1425-1432.
- [18]USUKAWA R,ODA H,ISHIKAWA T,et al.Conversion process of amorphous si-al-c-o fiber into nearly stoichiometric sic polycrystalline fiber[J].J Korean Ceram Soc,2016,53(6):610-614.
- [19]HASEGAWA Y.Synthesis of continuous silicon carbide fibre.Part 6Pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre[J].J Mater Sci,1989,24(4):1177-1190.
- [20]CHOLLON G,PAILLER R,NASLAIN R,et al.Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon)[J].J Mater Sci,1997,32(2):327-347.
- [21]LY H Q,TAYLOR R,DAY R J,et al.Conversion of polycarbosilane(PCS) to SiC-based ceramic Part 1.Characterisation of PCS and curing products[J].J Mater Sci,2001,36(16):4037-4043.
- [22]MAO X H,SONG Y C,LI W,et al.Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor[J].J Appl Polym Sci,2007,105(3):1651-1657.
- [23]SHIMOO T,OKAMURA K,TAKEUCHI H.Effect of reduced pressure on oxidation and thermal stability of polycarbosilane-derived SiCfiber[J].2003,38(24):4973-4979.
- [24]WANG D Y,MAO X H,SONG Y C,et al.SiC fiber with low electrical resistivity and oxygen content[J].Sci China Tech Sci,2010,53(4):1038-1042.
- [25]CHEN L F,ZHANG L,CAI Z H,et al.Effects of oxidation curing and sintering additives on the formation of polymer-derived near-stoichiometric silicon carbide fibers[J].J Am Ceram Soc,2008,91(2):428-436.
- [26]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
- [27]IVEKOVI?A,NOVAK S,DRA?I?G,et al.Current status and prospects of SiCf/SiC for fusion structural applications[J].J Eur Ceram Soc,2013,33(10):1577-1589.
- [28]ABDERRAZAK H,HADJ HMI,E S B.Silicon carbide:synthesis and properties[M]//Properties and Applications of Silicon Carbide,2011:361-388.