异己糖醇基脂肪-芳香共聚酯的结晶动力学研究Study of Crystallization Kinetics of Isohexide-based Aliphatic-Aromatic Copolyesters
张旭,陈咏,叶梦婷,乌婧,王华平
ZHANG Xu,CHEN Yong,YE Meng-ting,WU Jing,WANG Hua-ping
摘要(Abstract):
为改善生物可降解材料的结晶性能,以异己糖醇衍生物异艾杜糖-2,5-二甲醇(IIDML)为共聚单体,采用熔融聚合的方式合成了脂肪-芳香共聚酯,研究了IIDML和芳香族单体的含量对共聚酯结晶性能的影响。采用Jeziorny模型对共聚酯进行了非等温结晶动力学研究,以期为聚酯的加工提供参考。研究表明:IIDML的对称结构能够提高共聚酯的结晶性能;第三组分的加入能够提高共聚酯的结晶温度,可从60℃提升至150℃;另外第三组分会使共聚酯的结晶速率常数由0.683降低到0.496(芳香族物质的量分数30%),同时主结晶区晶体结构发生转变。共聚酯的Avrami指数在2~3之间,且第三组分不影响共聚酯的晶体生长方式。
In order to improve the crystallization properties of biodegradable materials, aliphatic-aromatic copolyesters were synthesized by melt polymerization with isohexide derivative, isoidide-2,5-dimethanol(IIDML), as the comonomer. The effects of IIDML and aromatic monomer content on the crystalline properties of copolyesters were investigated. The non-isothermal crystallization kinetics of copolyester was studied by Jeziorny model, in order to provide reference for the processing of copolyester. The research shows that the symmetrical structure of IIDML can improve the crystallization performance of the copolymer; the addition of the third component can increase the crystallization temperature of the copolyester, which can be increased from 60 ℃ to 150 ℃. In addition, the third component will reduce the crystallization rate constant of the copolyester from 0.683 to 0.496(aromatic mole fraction 30%), at the same time, the crystal structure of the main crystalline region changes. The Avrami index of copolyesters is between 2 and 3, and the third component does not affect the crystal growth pattern of copolyesters.
关键词(KeyWords):
脂肪-芳香共聚酯;异己糖醇;结晶动力学;生物基聚酯
aliphatic-aromatic copolyesters;isohexide;crystallization kinetics;bio-based polyester
基金项目(Foundation): 国家自然科学基金项目(52073054);; 国家重点研发计划项目(2021YFB3700300)
作者(Author):
张旭,陈咏,叶梦婷,乌婧,王华平
ZHANG Xu,CHEN Yong,YE Meng-ting,WU Jing,WANG Hua-ping
DOI: 10.16090/j.cnki.hcxw.2022.09.006
参考文献(References):
- [1] HUANG D L, TAO J X, CHENG M, et al. Microplastics and nanoplastics in the environment:macroscopic transport and effects on creatures[J].Journal of Hazardous Materials, 2021, 407:124399.
- [2] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:where is all the plastic[J]. Science, 2004, 304(5672):838-838.
- [3]杨菊香,张雅欣,贾园,等.可降解高分子材料的制备及其降解机理[J].塑料, 2021, 50(2):108-113.
- [4]柯琼贤,刘海平.生物可降解塑料和淀粉基可降解塑料的比较[J].食品界, 2018(6):68.
- [5]金剑,赵晓婷,武术方,等.聚对苯二甲酸-共-丁二酸丁二醇酯的研究及产业化现状[J].合成纤维工业, 2021, 44(2):56-61.
- [6] INDERTHAL H, TAI S L, HARRISON S T L. Non-hydrolyzable plastics-an interdisciplinary look at plastic bio-oxidation[J]. Trends Biotechnol, 2021, 39(1):12-23.
- [7]王跃,江洪波,陈大明,等.聚乳酸技术与市场现状及发展趋势分析[J].生物产业技术, 2017(6):17-22.
- [8] EDGE M, HAYES M, MOHAMMADIAN M, et al. Aspects of poly(ethylene-terephthalate)degradation for archival life and environmental degradation[J]. Polymer Degradation and Stability, 1991, 32(2):131-153.
- [9] WITT U, MULLER R J, DECKWER W D. New biodegradable polyester-copolymers from commodity chemicals with favorable use properties[J]. Journal of Environmental Polymer Degradation, 1995, 3(4):215-223.
- [10] WITT U, MULLER R J, DECKWER W D. Evaluation of the biodegradability of copolyesters containing aromatic compounds by investigations of model oligomers[J]. Journal of Environmental Polymer Degradation, 1996, 4(1):9-20.
- [11] WITT U, MULLER R J, DECKWER W D. Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance[J]. Journal of Environmental Polymer Degradation, 1997, 5(2):81-89.
- [12] WU J, EDUARD P, THIYAGARAJAN S, et al. Semicrystalline polyesters based on a novel renewable building block[J]. Macromolecules,2012, 45(12):5069-5080.
- [13] WU J, EDUARD P, THIYAGARAJAN S, et al. Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics[J]. ChemSusChem, 2015, 8(1):67-72.