聚乙烯醇缩丁醛/酚醛树脂复合纤维的结构及性能Structure and Properties of Poly(vinyl butyral)/Phenolic Resin Composite Fiber
黄熙怡,王彪
HUANG Xi-yi,WANG Biao
摘要(Abstract):
通过干法纺丝制备了聚乙烯醇缩丁醛/酚醛树脂(PVB/PF)复合纤维,研究了不同组分比例对该纤维的结构和性能的影响。结果表明,当PVB与PF质量比为5∶5时,PF在PVB中以尺寸为2~3μm的分散相存在。随着PF含量的增加,PVB/PF复合纤维的玻璃化转变温度(Tg)往高温方向偏移,且无论何种比例都表现为一个单一的Tg,这说明两者具有较好的相容性。红外光谱显示PVB与PF之间没有发生化学反应,但形成了氢键相互作用。热重分析发现PVB/PF复合纤维的热分解曲线综合了纯PVB和纯PF的特征。随着PF含量的增加,纤维的拉伸强度呈现出先上升后下降的趋势,当PVB与PF质量比为8∶2时,纤维的拉伸强度最高。
The poly(vinyl butyral)/phenolic resin(PVB/PF) composite fibers were prepared by dry spinning method,and the influence of different component ratios on the structure and properties of the fibers were studied.The results show that when the mass ratio of PVB to PF is 5:5,PF exists as a dispersed phase with a size of 2~3 μm in PVB.With the increase of PF content,the T_g of PVB/PF composite fibers shift to the high temperature direction.All of the ratios are expressed as a single T_g,it shows that the two composite have good miscibility.FTIR spectroscopy shows that there is no chemical reaction between PVB and PF,but a hydrogen bonding interaction is formed.TGA result finds that the TGA curve of PVB/PF composite fibers combine the characteristics of pure PVB and pure PF.With the increase of PF content,the tensile strength of the fibers shows a trend of first rising and then decreasing.When the mass ratio of PVB to PF is 8:2,the tensile strength of the fibers is the highest.
关键词(KeyWords):
聚乙烯醇缩丁醛;酚醛树脂;复合纤维;结构;性能
poly(vinyl butyral);phenolic resin;composite fiber;structure;property
基金项目(Foundation): 国家重点研发计划资助(2020YFB1505700)
作者(Author):
黄熙怡,王彪
HUANG Xi-yi,WANG Biao
DOI: 10.16090/j.cnki.hcxw.2022.05.007
参考文献(References):
- [1] HUNG C J, LIU C H, WANG C H, et al. Effect of conductive carbon material content and structure in carbon fiber paper made from carbon felt on the performance of a proton exchange membrane fuel cell[J]. Renewable Energy, 2015, 78:364-373.
- [2] YUAN W, WANG Y, LUO Z H, et al. Improved performances of SiBCN powders modified phenolic resins-carbon fiber composites[J]. Processes, 2021, 9(6):955.
- [3]王慧娟,卢建军,连丹丹,等.酚醛基活性炭纤维的制备及改性研究进展[J].化工新型材料, 2020, 48(10):236-240.
- [4] YING Y G, PAN Y P, REN R, et al. Effect of the molecular structure of phenolic novolac precursor resins on the properties of phenolic fibers[J]. Materials Chemistry and Physics, 2013, 143(1):455-460.
- [5]陶磊,郑云武,邸明伟,等.由液化物树脂制备多孔碳纳米纤维及其表征[J].材料导报, 2017, 31(10):101-106.
- [6]郑瑾,王冬爽,任东雪,等.酚醛纤维的湿法纺丝及其性能[J].上海纺织科技, 2021, 49(08):48-51.
- [7]盛杰,马昌,王冉冉,等.酚醛基纳米炭纤维的电纺制备及其形貌控制研究[J].炭素技术, 2016, 35(2):23-27.
- [8]苑会林,马沛岚,王婧,等.聚乙烯醇缩丁醛树脂的性能及应用[J].工程塑料应用, 2004(2):43-46.
- [9] LIAU L C K, YANG T C K, VISWANATH D S. Reaction pathways and kinetic analysis of PVB thermal degradation using TG/FT-IR[J]. Applied Spectroscopy, 1996, 50(8):1058-1065.
- [10] YAMASHITA Y, OUCHI K. A study on carbonization of phenolformaldehyde resin labelled with deuterium and 13C[J]. Carbon, 1981, 19(2):89-94.
- [11]邢宝林,张传祥,沈卫卫,等.酚醛树脂基多孔炭材料制备的研究[J].化学与生物工程, 2007(9):27-29.