多级结构静电纺纳米纤维膜在空气过滤领域研究进展Research Progress of Multilevel Structure Electrospun Nanofiber Membranes in Air Filtration
阳智,刘呈坤,毛雪,吴红,石煜,孙润军
YANG Zhi,LIU Cheng-kun,MAO Xue,WU Hong,SHI Yu,SUN Run-jun
摘要(Abstract):
静电纺纳米纤维膜具有纤维直径小、比表面积大、孔隙率高等优势,使其在空气过滤领域具有广阔的应用前景。相比特殊结构的纳米纤维膜,常规的静电纺纤维膜堆积密度大、过滤阻力高,增加了在实际使用中的能源消耗。从静电纺纤维膜结构和过滤性能的角度探讨了高效低阻空气过滤纳米纤维膜的构筑,介绍了珠粒、突起和多孔结构纤维膜在空气过滤领域的研究进展,指出了多级结构静电纺纳米纤维膜是高效低阻空气过滤膜的重点研究方向。
Electrospun nanofiber membrane has the advantages of small fiber diameter, large specific surface area and high porosity, which makes it have a broad application prospect in the field of air filtration.Compared with the nano-fiber membrane with special structure, the conventional electrostatic fiber membrane has high packing density and high filtration resistance, which increases the energy consumption in practical use. From the point of view of the structure and filtration performance of electrospun fiber membrane, the construction of high efficiency and low resistance air filtration nanofiber membrane are discussed, and the research progress of beads, protuberance and porous structure fiber membrane in air filtration field is introduced. It is pointed out that the multistage electrospun nanofiber membrane is the key research direction of high efficiency and low resistance air filter membrane.
关键词(KeyWords):
静电纺;纳米纤维膜;过滤效率;过滤阻力
electrospinning;nanofiber menbrane;filtration efficiency;filtration resistance
基金项目(Foundation): 国家自然科学基金资助项目(51503168);; 陕西省创新人才推进计划—青年科技新星项目(2017KJXX-23);; 山东省博士后创新项目专项资金资助项目(201504);; 西安工程大学纺织科学与工程学科建设经费资助项目(10709-0821)
作者(Author):
阳智,刘呈坤,毛雪,吴红,石煜,孙润军
YANG Zhi,LIU Cheng-kun,MAO Xue,WU Hong,SHI Yu,SUN Run-jun
DOI: 10.16090/j.cnki.hcxw.20191008.004
参考文献(References):
- [1] WANG R, GUAN S, SATO A, et al. Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions[J]. Journal of Membrane Science, 2013, 446(11):376-382.
- [2] YIM S H L, BARRETT S R H. Public health impacts of combustion emissions in the United Kingdom[J]. Environmental Science&Technology, 2012, 46(8):4291-4296.
- [3] VEHLOW J. Air pollution control systems in WtE units:An overview[J]. Waste Management, 2015, 37:58-74.
- [4] KASISCOVICK M. Long-term exposure to air pollution and incidence of cardiovascular events in women[J]. Digest of the World Core Medical Journals(Cardiology), 2007, 356(5):447.
- [5] DOIG A, WARWICK H. Smoke-the killer in the kitchen:indoor air pollution in developing countries[M]. New Delhi:Oxford University Press and World Bank, 2004:165-168.
- [6] LI X, WANG N, FAN G, et al. Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles[J]. Journal of Colloid and Interface Science, 2015, 439:12-20.
- [7] YANG C. Aerosol filtration application using fibrous media—an industrial perspective[J]. Chinese Journal of Chemical Engineering, 2012, 20(1):1-9.
- [8] JOUBERT A, LABORDE J C, BOUILLOUX L, et al. Modelling the pressure drop across HEPA filters during cake filtration in the presence of humidity[J]. Chemical Engineering Journal, 2011, 166(2):616-623.
- [9] CARACCIOLO P C, THOMAS V, VOHRA Y K, et al. Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications[J]. Journal of Materials Science Materials in Medicine, 2009, 20(10):2129-2137.
- [10]何丽芬,于淼涵,刘建祥,等.开纤化水刺滤料的制备及关键技术研究[J].产业用纺织品, 2018, 36(4):18-22, 42.
- [11] YUN K M, SURYAMAS A B, ISKANDAR F, et al. Morphology optimization of polymer nanofiber for applications in aerosol particle filtration[J]. Separation and Purification Technology, 2010, 75(3):340-345.
- [12] SU S, LI J L, ZHOU L, et al. Ultra-thin electro-spun pan nanofiber membrane for high-efficient inhalable pm2.5particles filtration[J]. Journal of Nano Research, 2017, 4542(46):73-81.
- [13] CAO J, CHENG Z, KANG L, et al. Novel anti-fouling polyethersulfone/polyamide 66 membrane preparation for air filtration by electrospinning[J]. Materials Letters, 2017, 192:12-16.
- [14] STRAIN I N, WU Q, POURRAHIMI A M, et al. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration[J]. Journal of Materials Chemistry. A, 2015, 3(4):1632-1640.
- [15] WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid)fibrous membranes for air filtration[J]. Journal of Colloid and Interface Science, 2015, 441:121-129.
- [16] NEIVA A C B, GOLDSTEIN L. A procedure for calculating pressure drop during the build-up of dust filter cakes[J]. Chemical Engineering and Processing, 2003, 42(6):495-501.
- [17] WALLACE L, HOWARD-REED C. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999-2000[J]. Air Repair, 2002, 52(7):828-844.
- [18] WANG C S, OTANI Y. Removal of nanoparticles from gas streams by fibrous filters:A review[J]. Industrial&Engineering Chemistry Research,2013, 52(1):5-17.
- [19] LEUNG W F, HUNG C H, YUEN P T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate[J]. Separation and Purification Technology, 2010, 71(1):30-37.
- [20]覃小红,王善元.静电纺纳米纤维的过滤机理及性能[J].东华大学学报(自然科学版), 2007, 33(1):52-56.
- [21] TABTI B, YAHIAOUI B, BENDAHMANE B, et al. Surface potential decay dynamic characteristics of negative-corona-charged fibrous dielectric materials[J]. IEEE Transactions on Dielectrics&Electrical Insulation, 2014, 21(2):829-835.
- [22] DING B, LI C, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15):3685-3691.
- [23] ZHANG S, LIU H, YU J, et al. Microwave structured polyamide-6nanofiber/net membrane with embedded poly(m-phenylene isophthalamide)staple fibers for effective ultrafine particle filtration[J]. Journal of Materials Chemistry A, 2016, 4(16):6149-6157.
- [24] ZHANG S, LIU H, ZUO F, et al. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter[J].Small, 2017, 13(10):1603151-1603162.
- [25] LIU B, ZHANG S, WANG X, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J].Journal of Colloid and Interface Science, 2015, 457:203-211.
- [26]程博闻,高鲁, SARMAD B,等.静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J].纺织学报, 2018, 39(12):145-150.
- [27] ZHANG K, LI Z, KANG W, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183:62-69.
- [28] LI Z, XU Y, FAN L, et al. Fabrication of polyvinylidene fluoride treelike nanofiber via one-step electrospinning[J]. Materials&Design, 2016,92:95-101.
- [29] WANG J, ZHAO W, WANG B, et al. Multilevel-layer-structured polyamide 6/poly(trimethylene terephthalate)nanofibrous membranes for low-pressure air filtration[J]. Journal of Applied Polymer Science, 2017,134(16):44716-44724.
- [30]张金宁,宋明玉,陈昀,等.交叉静电纺聚氨酯/聚丙烯腈高效低阻空气过滤膜的制备研究[J].化工新型材料, 2018, 46(2):107-110.
- [31] XIONG J, ZHOU M, ZHANG H, et al. Sandwich-structured fibrous membranes with low filtration resistance for effective PM 2.5 capture via one-step needleless electrospinning[J]. Materials Research Express,2018, 6(3):035027.
- [32] WANG N, SI Y, WANG N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J].Separation and Purification Technology, 2014, 126:44-51.
- [33]刘兆麟,张威.具有梯度结构的静电纺聚酰胺6珠粒纤维/纳米纤维空气过滤材料研究[J].现代纺织技术, 2018, 26(2):1-6.
- [34] WANG Z, PAN Z. Preparation of hierarchical structured nano-sized/porous poly(lactic acid)composite fibrous membranes for air filtration[J].Applied Surface Science, 2015, 356:1168-1179.