聚丙烯腈纤维差示扫描量热分析方法优化Optimization of Differential Scanning Calorimetry for Polyacrylonitrile Fiber
李莹,赵亚新,张锦芳,李宁
LI Ying,ZHAO Ya-xin,ZHANG Jin-fang,LI Ning
摘要(Abstract):
为评价聚丙烯腈纤维氧化反应速率和氧化程度,特别是调控氧化聚丙烯腈纤维皮芯结构形成,优化了聚丙烯腈纤维差示扫描量热分析方法。建立不同升温速率下差示扫描量热分析基线,分析铝坩埚和氧化铝陶瓷坩埚导热系数差异,改进样品取样量和盛装方法,深入解析热学性能分析谱图。结果表明:选择铝坩埚,控制样品取样量在5~7 mg,在铝坩埚上钻孔保证充分传质传热反应;利用Kissinger方法得到反应活化能和速率常数;优化后的聚丙烯腈纤维差示扫描量热分析方法较好揭示了材料组成、结构和反应差异。
In order to evaluate the oxidation reaction rate and oxidation degree of polyacrylonitrile fiber and tailor the formation of skin-core structure of oxidized polyacrylonitrile fiber, differential scanning calorimetry(DSC) method for polyacrylonitrile fiber is optimized. The DSC baseline is established under various heating rate, and the difference of coefficient of thermal conductivity between aluminum crucible and aluminum oxide crucible is analyzed. Amount of sample and packing method are improved, and the spectra of thermal performance is thoroughly analyzed. The results show that the activation energy and rate coefficient could be obtained using Kissinger method after some improvements are conducted such as aluminum crucible, 5~7 mg of sample amount, drilling holes on aluminum crucible for better mass and heat transfer. The materials composition, structure and reaction difference could be revealed by the optimization of differential scanning calorimetry for polyacrylonitrile fiber.
关键词(KeyWords):
差示扫描量热分析;聚丙烯腈;环化反应;活化能
differential scanning calorimetry;polyacrylonitrile;cyclization reaction;activation energy
基金项目(Foundation):
作者(Author):
李莹,赵亚新,张锦芳,李宁
LI Ying,ZHAO Ya-xin,ZHANG Jin-fang,LI Ning
DOI: 10.16090/j.cnki.hcxw.2021.10.010
参考文献(References):
- [1] ERIK F, LISA M S, DENIS I, et al. Carbon Fibers:Precursor systems,processing, structure, and properties[J]. Angewandte Chemie International Edition, 2014, 53(21):5262-5298.
- [2]严华,吕春祥,常春报,等.氧化聚丙烯腈纤维径向异质光学显微分析[J].宇航材料工艺, 2020, 50(6):76-81.
- [3]刘杰,禹化果,薛岩,等.共聚组分对聚丙烯腈(PAN)纤维预氧化程度的影响及其与碳纤维结构和性能的关联[J].北京化工大学学报(自然科学版), 2013, 40(5):61-66.
- [4]曾颖,王晓娜,张炜,等.差示扫描量热基线漂移补偿算法设计[J].中国计量学院学报, 2014, 25(2):170-175.
- [5] LIU X R, CHEN W, HONG Y L, et al. Stabilization of atactic-polyacrylonitrile under nitrogen and air as studied by solid-state NMR[J]. Macromolecules, 2015, 48(15):5300-5309.
- [6] CHRISTINA K, GREGOR S, B, JUDITH MW, et al. Microscopic investigation of polyacrylonitrile fiber fibrils separated by ultrasonic etching[J].Journal of Materials Science, 2018, 53(6):4693-4704.
- [7] FU Z Y, LIU B J, DENG Y J, et al. The suitable itaconic acid content in polyacrylonitrile copolymers used for PAN-based carbon fibers[J]. Journal of Applied Polymer Science, 2016, 133(38):43919-43929.
- [8] WEI H Q, SUO X D, LU C X, et al. A comparison of coagulation and gelation on the structures and stabilization behaviors of polyacrylonitrile fibers[J]. Journal of Applied Polymer Science, 2019, 137(19):48671-48682.