高分子/碳复合负介电材料的制备及应用综述Summary of Preparation and Application of Polymer/Carbon Composite Negative Dielectric Materials
王雨思,王瑛,王明,蔡计杰,孙昊,吴新锋
WANG Yu-si,WANG Ying,WANG Ming,CAI Ji-jie,SUN-Hao,WU Xin-feng
摘要(Abstract):
复合材料往往由导体-绝缘体组成,当导电相含量超过临界体积分数,即逾渗阈值时,复合材料有可能出现负介电常数。由于金属陶瓷有其难以避免的局限性,同样能够展现出负介电性能的高分子/碳复合材料便应运而生。该类复合材料在传感器、隐身衣、可穿戴电子设备等方面的应用前景非常广阔。主要介绍了高分子/碳复合负介电材料的分类、性能以及应用研究。
Composite materials are often composed of conductor-insulator. When the conductive phasecontent exceeds the critical volume fraction, that is, the percolation threshold, the composite material mayhave a negative dielectric constant. Due to the unavoidable limitations of cermets, polymer/carbon compositematerials that can also exhibit negative dielectric properties have emerged. The application prospects ofsuch composite materials in sensors, stealth clothing, wearable electronic devices, etc. are very broad. Theclassification, performance and application research of polymer/carbon composite negative dielectricmaterials are mainly introduced.
关键词(KeyWords):
复合材料;负介电常数;碳材料
composite material;negative dielectric constant;carbon material
基金项目(Foundation): 中国博士后科学基金(2017M611757);; 上海市科技人才计划项目(19QB1402200);; 上海市科委“科技创新行动计划”地方院校能力建设项目(19040501800)
作者(Author):
王雨思,王瑛,王明,蔡计杰,孙昊,吴新锋
WANG Yu-si,WANG Ying,WANG Ming,CAI Ji-jie,SUN-Hao,WU Xin-feng
DOI: 10.16090/j.cnki.hcxw.2021.10.015
参考文献(References):
- [1] DIANA ESTEVEZ, QIN F, LUO Y, et al. Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites[J].Composites Science and Technology, 2019, 171:206-217.
- [2] JIAO Z, D'HOOGE D R, CARDON L, et al. Elegant design of carbon nanotube foams with double continuous structure for metamaterials in a broad frequency range[J]. Journal of Materials Chemistry C, 2020, 8(9):3226-3234.
- [3] TALLMAN T N. The effect of thermal loading on negative permittivity in carbon nanofiber/silicone metacomposites[J]. Materials Today Communications, 2020, 22:100843.
- [4] GU H, XU X, DONG M, et al. Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites[J]. Carbon,2019, 147:550-558.
- [5] QU Y, WANG H, FAN G, et al. Meta-composites:NiO supported 3D carbon networks structured by 1D building blocks towards tailorable negative permittivity[J]. Journal of Materials Science:Materials in Electronics,2018, 29(21):18815-18827.
- [6] GHOLIPU R, KHORSHID Z, BAHAR A. Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external ac electric field[J]. ACS Applied Materials&Interfaces, 2017, 9(14):12528-12539.
- [7] XIE P, SUN W, DU A, et al. Epsilon㎞egative Carbon Aerogels with State Transition from Dielectric to Degenerate Semiconductor[J]. Advanced Electronic Materials, 2021:2000877.
- [8] SUN K, QIN J, WANG Z, et al. Polyvinyl alcohol/carbon fibers composites with tunable negative permittivity behavior[J]. Surfaces and Interfaces, 2020, 21, 100735.
- [9] NI J, ZHAN R, QIU J, et al. Multi-interfaced graphene aerogel/polydimethylsiloxane metacomposites with tunable electrical conductivity for enhanced electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2020, 8(34):11748-11759.
- [10] MALIK R, LATA S, MALIK R S. Study of supercapacitive pursuance of polypyrrole/sulphonated poly(ether ether ketone)/multi walled carbon nanotubes composites for energy storage[J]. Journal of Energy Storage,2020, 27:101162.
- [11] ALI H, LI Y, AHMED M, et al. Stop band blocking window modeling with energy absorber in 5G mid-band cellular communications[J]. International Journal of RF and Microwave Computer-Aided Engineering,2021, 31(4):e22533.
- [12] TAKIZAWA Y, CHUNG D D L. Continuous carbon fiber polymer–matrix composites in unprecedented antiferroelectric coupling providing exceptionally high through-thickness electric permittivity[J]. Journal of Materials Science, 2016, 51(14):6913-6932.
- [13] BRIGGS A, NORDIN L, MUHOWSKI A, et al. Enhanced room temperature infrared leds using monolithically integrated plasmonic materials[J]. Optica, 2020, 7(10):1355.
- [14] GEETHARAMANI G, AATHMANESAN T. A metamaterial inspired tapered patch antenna for wlan/wimax applications[J]. Wireless Personal Communications, 2020, 113(11):1331-1343.
- [15] AEPURU R, RAO C N, UDAYABHASKAR R, et al. Polarization-induced quantum-mechanical charge transfer in perovskite graphene nanocomposites with superior electro-optic switching modulation[J]. The Journal of Physical Chemistry C, 2020, 124(49):26648-26658.
- [16] YAN-JUN, WAN, PENG-LI, et al. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly eficient electromagnetic interference shielding[J]. Small(Weinheim an der Bergstrasse, Germany), 2018(Spec):e1800534.
- [17] JALALI H, KHOEINI F, PEETERS F M, et al. Hydration effects and negative dielectric constant of nano-confined water between cation intercalated MX-enes[J]. Nanoscale, 2020, 13(2):922-929.