石墨烯对聚苯硫醚非等温结晶行为的影响研究Effect of Graphene on Non-Isothermal Crystallization Behavior of Polyphenylene Sulfide
王研,胡泽旭,周哲,朱美芳
WANG Yan,HU Ze-xu,ZHOU Zhe,ZHU Mei-fang
摘要(Abstract):
通过熔融共混法制备了聚苯硫醚(PPS)/石墨烯(G)复合材料,采用扫描电子显微镜、差示扫描量热仪研究了PPS/G复合材料的断面形貌及非等温结晶过程,利用莫志深方程、Dobreva方程和Kissinger方程分析了非等温结晶动力学行为。结果表明:石墨烯质量分数低于0.5%时,其在PPS基体中具有较好的分散性;石墨烯起到了异相成核作用,使PPS/G程、Dobreva方程和Kissinger方程则进一步验证了石墨烯的引入促进了PPS/G复合材料的结晶。
Polyphenylene sulfide(PPS)/graphene(G) composites were prepared by melt blending. The crosssection of PPS/G composites was studied by scanning electron microscopy, and the non-isothermal crystallization process of PPS/G composites was studied by differential scanning calorimeter. The non-isothermal crystallization kinetics were analyzed by the Mohsen equation, the Dobreva equation and the Kissinger equation. The results show that when the graphene content is less than 0.5%, it has better dispersibility in the PPS matrix. Graphene plays a heterogeneous nucleation, which increases the crystallization temperature and accelerates the crystallization rate of the PPS/G composite. The Mohsen equation, Dobreva equation and Kissinger equation further verify that the introduction of graphene promotes the crystallization of PPS/G composites.
关键词(KeyWords):
聚苯硫醚;石墨烯;异相成核;非等温结晶动力学
polyphenylene sulfide;graphene;heterogeneous nucleation;non-isothermal crystallization kinetics
基金项目(Foundation):
作者(Author):
王研,胡泽旭,周哲,朱美芳
WANG Yan,HU Ze-xu,ZHOU Zhe,ZHU Mei-fang
DOI: 10.16090/j.cnki.hcxw.2019.03.004
参考文献(References):
- [1]李利君,蒲宗耀,李风,等.聚苯硫醚纤维的热降解动力学[J].纺织学报, 2010, 31(12):4-8.
- [2]田希均.聚苯硫酸纤维研究进展广西纺织科技[J].广西纺织科技,2010, 39(2):27-28.
- [3]霍字平.聚苯硫醚的用途及生产方法的综述[J].化学工程与装备,2009(10):142-145.
- [4]王桦,覃俊,陈丽萍.聚苯硫醚纤维及其应用[J].合成纤维, 2012, 41(3):7-12.
- [5]王一帆,钱晓明.气体过滤用纤维材料的设计与选用[J].化纤与纺织技术, 2016, 45(4):22-26.
- [6] JIKEI M, UCHIDA D, HARUTA Y, et al. Synthesis of hyperbranched poly(phenylene sulfide)via a poly(sulfonium cation)precursor[J]. Macromolecules, 1996(29):1062-1064.
- [7]谢皮斯基.纤维成形基本原理:制造纤维的纺丝和拉伸的科学[M].上海科学技术出版社, 1983.
- [8] JOSHI M, BUTOLA B S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites[J]. Polymer, 2004, 45(14):4953-4968.
- [9] WEI L Q, STARK N M, MCDONALD A G. Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate)and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)bioplastics reinforced and grafted with alpha-cellulose fibers[J]. Green Chemistry, 2015, 17(10):4800-4814.
- [10] NAFFAKH M, MARCO C, ELLIS G. Inorganic WS2 nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate)[J]. Crystengcomm, 2014, 16(6):1126-1135.
- [11] DIEZ P, ANA M, NAFFAKH M. Tuning the properties of carbon fiber-reinforced poly(phenylene sulphide)laminates via incorporation of inorganic nanoparticles[J]. Polymer, 2012, 53(12):2369-2378.
- [12] NAFFAKH M, DIEZ-P, MARCO C, et al. Morphology and thermal properties of novel poly(phenylene sufide)hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS2nanoparticles[J]. Journal of Materials Chemistry, 2012, 22(4):1418-1425.
- [13] NAFFAKH M, MARCO C, GOMEZ M, et al. Use of inorganic fullerene-like WS2to produce new high-performance polyphenylene sulfide nanocomposites[J]. Role of the Journal of Physical Chemistry B, 2009, 113(30):10104-10111.
- [14] LIAN D D, DAI J M, ZHANG R P, et al. Effect of Ti-SiO2nanoparticles on non-isothermal crystallization of polyphenylene sulfide fibers[J].Journal of Thermal Analysis and Calorimetry, 2017, 129(1):377-390.
- [15] HU Z X, LI L L, SUN B, et al. Effect of TiO2@TiO2nanoparticles on the mechanical and UV-resistance properties of polyphenylene sulfide fibers[J]. Progress in Natural Science-Materials International, 2015, 25(4):310-315.
- [16] YANG Y Q, DUAN H J, ZHANG S Y, et al. Morphology control of nanofillers in poly(phenylene sulfide):A novel method to realize the exfoliation of nanoclay by SiO2via melt shear fiow[J]. Composites Science and Technology, 2013(75):28-34.
- [17] ZHANG X Z, ZHANG K, ZHOU Z, et al. Preparation of radiation-resistant high-performance sulfide fibers with improved progressing[J]. Chinese Materials Conference Location, 2012(27):1354-1358.
- [18] JIANG Z, HORNSBY P, MCOOL R, et al. Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites[J]. Journal of Applied Polymer Science, 2012, 123(5):2676-2683.
- [19] JIANG Z Y, HORNSY P, MCCOOL, R. Nucleation effect of hydroxylpurified multiwalled carbon nanotubes in poly(p-phenylene sulfide)composites[J]. Journal of Applied Polymer Science, 2013, 127(1):224-229.
- [20] DIEZ P, ANA M, DIEZ V, et al. High-performance aminated poly(phenylene sulfide)ZnO nanocomposites for medical applications[J]. Acs Applied Materials&Interfaces, 2014, 6(13):10132-10145.
- [21] DENG S L, LIN Z D, XU B F, et al. Effects of carbon fillers on crystallization properties and thermal conductivity of poly(phenylene sulfide)[J]. Polymer-1024.
- [22] XING J, DENG B Y, LIU Q S. Effect of graphene nanoplatelets on the performance of polyphenylene sulfide composites produced by melt intercalation[J]. High Performance Polymers, 2018, 30(5):519-526.
- [23]胡泽旭,陈姿晔,朱美芳,等.石墨烯改性聚苯硫醚纤维光稳定性及其增强机制[J].纺织学报, 2017, 38(11):1-8.
- [24]吴其晔,张萍,杨文君,等.高分子物理学[M].北京:高等教育出版社.
- [25]莫志深.一种研究聚合物非等温结晶动力学的方法[J].高分子学报, 2008,(7):656-661.