超高分子质量聚乙烯材料导热性能研究综述Review on the Thermal Conductivity Modification of Ultra High Molecular Weight Polyethylene
王瑛,姜涛,段景宽,赵远涛,李文戈,吴新锋
WANG Ying,JIANG Tao,DUAN Jing-kuan,ZHAO Yuan-tao,LI Wen-ge,WU Xin-feng
摘要(Abstract):
超高分子质量聚乙烯(UHMWPE)以其优越的耐磨性能、耐低温性能、抗冲击性能、生理惰性和无毒性等性能而广泛应用于医学、交通运输、化工、体育器械、造纸、纺织、采矿等领域。但在使用过程中,UHMWPE的线性结构使得UHMWPE导热系数非常低,热量常造成UHMWPE发生分子结构蠕变和强度疲劳。因此非常有必要提高UHMWPE材料的导热性能,改善材料耐蠕变性能,提高UHMWPE的使用寿命。从填料改性法和本体拉伸结晶取向改性法对UHMPWE的导热性能进行综述,为UHMWPE的研究提供一些借鉴。
Ultra high molecular weight polyethylene(UHMWPE) with superior wear resistance, low temperature resistance, impact resistance, physiological inertness and non-toxicity is used in the medicine, transportation, chemical, sports equipment, papermaking, textile, mining and other fields. But in the using process, the linear structure of UHMWPE makes the thermal conductivity of UHMWPE very low. Therefore, it is necessary to improve the thermal conductivity, creep resistance and service life of UHMWPE. The thermal conductivity of UHMWPE is reviewed from the methods of filler modification and bulk tensile crystallization orientation modification. It is hoped to provide some suggestions for the research of UHMWPE.
关键词(KeyWords):
UHMWPE;导热系数;填料改性;拉伸取向
UHMWPE;thermal conductivity;filler modification;tensile orientation
基金项目(Foundation): 中国博士后科学基金(2017M611757)资助;; “上海高水平地方高校创新团队(海事安全与保障)”项目资助
作者(Author):
王瑛,姜涛,段景宽,赵远涛,李文戈,吴新锋
WANG Ying,JIANG Tao,DUAN Jing-kuan,ZHAO Yuan-tao,LI Wen-ge,WU Xin-feng
DOI: 10.16090/j.cnki.hcxw.2022.07.007
参考文献(References):
- [1] PATIL NA, NJUGUNA J, KANDASUBRAMANIAN B. UHMWPE for biomedical applications:Performance and functionalization[J]. European Polymer Journal, 2020, 125, doi:10.1016/j.eurpolymj. 2020. 109529.
- [2] KILGOUR A, ELFICK A. Influence of crosslinked polyethylene structure on wear of joint replacements[J]. Tribology International, 2009, 42(11-12):1582-1594.
- [3] WANG Y Z, YIN Z W. Tribological properties of ultrahigh-molecularweight polyethylene(UHMWPE)composites reinforced with different contents of glass and carbon fibers[J]. Industrial Lubrication and Tribology,2019, 71(1):22-30.
- [4] NASKAR S, PANDA AK, JANA A, et al. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite:Processing approach, physical properties, stem/bone cell functionality, and blood compatibility[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2020.doi.org/10.1002/jbm.b. 34567.
- [5] BAENA J C, PENG Z X. Dispersion state of multi-walled carbon nanotubes in the UHMWPE matrix:Effects on the tribological and mechanical response[J]. Polymer Testing, 2018, 71:125-136.
- [6] WANG Y Z, YIN Z W, LI H L, et al. Friction and wear characteristics of ultrahigh molecular weight polyethylene(UHMWPE)composites containing glass fibers and carbon fibers under dry and water-lubricated conditions[J]. Wear, 2017, 380-381.
- [7] ALIYU I K, AZAM M U, LAWAL D U, et al. Optimization of SiC concentration and process parameters for a wear-resistant UHMWPE nancocomposite[J]. Arabian Journal for Science and Engineering, 2020, 45(2):849-860.
- [8] GURGEN S, CELIK O N, KUSHAN M C. Tribological behavior of UHMWPE matrix composites reinforced with PTFE particles and aramid fibers[J]. Composites Part B-Engineering, 2019, 173:106949.
- [9] WU L F, ZHANG Z Z, YANG M M, et al. Mulberry-like carbon spheres decorated with UiO-66-NH2for enhancing the mechanical and tribological performances of UHMWPE composites[J]. Tribology International, 2020,141. doi:10.1016/j.triboint.2019.105916.
- [10] GOLCHIN M, VILLAIN A, EMAMI N. Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts[J]. Tribology International, 2017, 110:195-200.
- [11] HAN Y, CHEN J H. Experimental investigation on tribological properties of UHMWPE with the addition of basalt fiber[J]. Advanced Composites Letters, 2019, 28. doi:10.1177/2633366x19894596.
- [12] KUANG FM, ZHOU XC, HUANG J, et al. Tribological properties of nitrite rubber/UHMWPE/nano-MoS2water-lubricated bearing material under low speed and heavy duty[J]. Journal of Tribology-Transactions of the Asme, 2018,140(6):061301.
- [13] MOHAMMED AS. UHMWPE nanocomposite coatings reinforced with alumina(Al2O3)nanoparticles for tribological applications[J]. Coatings, 2018, 8(8). doi:10.3390/coatings8080280.
- [14] HADDADI S A, SAADATABADI A R, KHERADMAND A, et al.SiO2-covered graphene oxide nanohybrids for in situ preparation of UHMWPE/GO(SiO2)nanocomposites with superior mechanical and tribological properties[J]. Journal of Applied Polymer Science, 2019, 136. doi:10.1002/app. 47796.
- [15] PANG W C, WU J L, ZHANG Q F, et al. Graphene oxide enhanced,radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with high hardness and tensile properties[J]. Rsc Advances, 2017, 7(87):55536-55546.
- [16] SALARI M, TAROMSARI SM, BAGHERI R, et al. Improved wear,mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement[J]. Journal of Materials Science, 2019, 54(5):4259-4276.
- [17] WANG L, YIN X C, HE G J, et al. Ultrasound-assisted melt mixing for the preparation of UHMWPE/OMMT nanocomposites[J]. Journal of Thermoplastic Composite Materials, 2018, 31(6):784-802.
- [18] LIU C Y, ISHIGAMI A, KUROSE T, et al. Evaluation of internal morphology and engineering properties of graphite-filled UHMWPE nanocomposites produced using a novel octa-screw kneading extruder[J]. Journal of Polymer Engineering, 2019, 39(3):264-270.
- [19] MELK L, EMAMI N. Mechanical and thermal performances of UHMWPE blended vitamin E reinforced carbon nanoparticle composites[J].Composites Part B-Engineering, 2018, 146:20-27.
- [20] MUKHTAR S S, MEHMOOD M S, MAQBOOL S A, et al. Effect of gamma-irradiation on the thermal properties of UHMWPE/MWCNTs nanocomposites:a comparative study of incorporating unmodified and gamma-ray-modified MWCNTs[J]. Bulletin of Materials Science, 2018,41. doi:10.1007/s12034-017-1525-7.
- [21] LI X B, YUE F L, PANG W C, et al. Mechanical and wear properties of GO-enhanced irradiated UHMWPE with good oxidation resistance[J].Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27(5):459-467.
- [22] MAQBOOL S A, MEHMOOD M S, MUKHTAR S S, et al. Dielectric relaxation and ac conduction in gamma-irradiated UHMWPE/MWCNTs nano composites:Impedance spectroscopy analysis[J]. Radiation Physics and Chemistry, 2017, 134:40-46.
- [23] ALAM F, CHOOSRI M, GUPTA T K, et al. Electrical, mechanical and thermal properties of graphene nanoplatelets reinforced UHMWPE nanocomposites[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2019, 241:82-91.
- [24] LEBEDEV O V, OZERIN A N, KECHEK'YAN A S, et al. A study of oriented conductive composites with segregated network structure obtained via solid-state processing of UHMWPE reactor powder and carbon nanofillers[J]. Polymer Composites, 2019, 40:E146-E55.
- [25] FIGUEIREDO A B D, VITAL H D, WEBER R P, et al. Ballistic tests of alumina-UHMWPE composites submitted to gamma radiation[J]. Materials Research-Ibero-American Journal of Materials, 2019, 22. doi:10.1590/1980-5373-mr-2019-0251.
- [26] YANG Z M, LIU J X, WANG F C, et al. Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites[J]. Composite Structures, 2019,229. doi:10.1016/j.compstruct.2019.111434.
- [27] FENG C P, CHEN L, WEI F, et al. Highly thermally conductive UHMWPE/graphite composites with segregated structures[J]. Rsc Advances, 2016, 6(70):65709-65713.
- [28] GAO C W, LU H, NI H Y, et al. Structure, thermal conductive, dielectric and electrical insulating properties of UHMWPE/BN composites with a segregated structure[J]. Journal of Polymer Research, 2017, 25(1):6.
- [29] GU J W, GUO Y Q, LV Z Y, et al. Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J]. Composites Part a-Applied Science and Manufacturing, 2015, 78:95-101.
- [30] GU J W, LI N, TIAN L D, et al. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites[J]. Rsc Advances, 2015, 5(46):36334-36339.
- [31] GUPTA T K, CHOOSRI M, VARADARAJAN K M, et al. Self-sensing and mechanical performance of CNT/GNP/UHMWPE biocompatible nanocomposites[J]. Journal of Materials Science, 2018, 53(11):7939-7952.
- [32] REDDY S K, KUMAR S, VARADARAJAN K M, et al. Strain and damage-sensing performance of biocompatible smart CNT/UHMWPE nanocomposites[J]. Materials Science&Engineering C-Materials for Biological Applications, 2018, 92:957-968.
- [33] REN P G, HOU S Y, REN F, et al. The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN plus MWCNT)hybrid composites with segregated structure[J].Composites Part a-Applied Science and Manufacturing, 2016, 90:13-21.
- [34] WANG X, LU H, FENG C P, et al. Facile method to fabricate highly thermally conductive UHMWPE/BN composites with the segregated structure for thermal management[J]. Plastics Rubber and Composites, 2020, 49(5):196-203.
- [35] WANG Y, QIAO X S, WAN J, et al. Preparation of AlN microspheres/UHMWPE composites for insulating thermal conductors[J]. Rsc Advances, 2016, 6(83):80262-80267.
- [36] WANG X, LU H, CHEN J. Highly thermally conductive UHMWPE/NG composites with the segregated structure and their application for heat spreader[J]. Journal of Thermoplastic Composite Materials, 2020. doi:10.1177/0892705720965649.
- [37] PARK HJ, KIM J, SEO Y, et al. Wear behavior of in situ polymerized carbon nanotube/ultra high molecular weight polyethylene composites[J].Macromolecular Research, 2013, 21(9):965-970.
- [38] GUO Y Y, CAO C L, FB L, et al. Largely enhanced thermal conductivity and thermal stability of ultra high molecular weight polyethylene composites via BN/CNT synergy[J]. Rsc Advances, 2019, 9(70):40800-40809.
- [39] RYVKINA N G, NEZHNYI P A, KUDINOVA O I, et al. Electrical and heat conduction properties of polymerization-filled composites based on ultra-high-molecular-weight polyethylene and nano-and micronsized aluminum particles[J]. Russian Journal of Physical Chemistry B,2019, 13(5):831-837.
- [40] REN P G, SI X H, SUN Z F, et al. Synergistic effect of BN and MWCNT hybrid fillers on thermal conductivity and thermal stability of ultrahigh-molecular-weight polyethylene composites with a segregated structure[J]. Journal of Polymer Research, 2016, 23(2):21.
- [41] WU X F, JIANG P K, ZHOU Y, et al. Influence of alumina content and thermal treatment on the thermal conductivity of UPE/Al2O3composite[J]. Journal of Applied Polymer Science, 2014, 131(15):40528.
- [42] WANG X W, ZHENG H, SUN Y F. Study on structures and properties of ultra-hot drawing UHMWPE fibers fabricated via dry spinning method[J]. Journal of Polymer Engineering, 2018, 38(9):863-870.
- [43] CAO T, CHEN X W, LIN Y F, et al. Structural evolution of UHMWPE fibers during prestretching far and near melting temperature:An in situ synchrotron radiation small-and wide-angle X-ray scattering study[J]. Macromolecular Materials and Engineering, 2018, 303(2):1700493.
- [44] CHOY C L, LUK W H, CHEN F C. Thermal conductivity of highly oriented polyethylene[J]. Polymer, 1978, 19:155-62.
- [45] SHEN S, HENRY A, TONG J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4):251-255.
- [46] CAO B Y, LI Y W, KONG J, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique[J]. Polymer, 2011, 52(8):1711-1715.
- [47] CHOY C L, WONG Y W, YANG G W, et al. Elastic modulus and thermal conductivity of ultradrawn polyethylene[J]. Journal of Polymer Science Part B:Polymer Physics, 1999, 37(23):3359-3367.
- [48] YAMANAKA A, IZUMI Y, KITAGAWA T, et al. The radiation effect on thermal conductivity of high strength ultra-high-molecular-weight polyethylene fiber by γ-rays[J]. Journal of Applied Polymer Science,2006, 101(4):2619-2626.
- [49] DAI G L, LI L, XIAO H, et al. Influencing factors and measuring method of the heat conducting performance of UHMWPE single fiber[J].Journal of Industrial Textiles, 2018, 47(8):1908-1924.
- [50] GUO Y T, LEUNG S N. Strain-induced oriented crystallization of UHMWPE:Enhanced thermal conductivity through molecular chain alignment[J]. Aip Advances, 2018, 8(4):045126.
- [51] RONCA S, IGARASHI T, FORTE G, et al. Metallic-like thermal conductivity in a lightweight insulator:Solid-state processed ultra high molecular weight polyethylene tapes and films[J]. Polymer, 2017, 123:203-210.
- [52] SHI A, LI Y, LIU W, et al. High thermal conductivity of chainaligned bulk linear ultra-high molecular weight polyethylene[J]. Journal of Applied Physics, 2019, 125(24):245110.