静电纺PLGA管状支架的构建及其生物力学性能The Structure and Biomechanical Properties of the Electrospun PLGA Tubular Scaffold
李双燕,王曙东,张幼珠,王红卫,邱鹏
LI Shuang-yan1, WANG Shu-dong1,2, ZHANG You-zhu1, WANG Hong-wei1
摘要(Abstract):
以具有良好生物相容性、生物可降解性的聚丙交乙交酯(PLGA)为原料,以高速旋转的滚轴为收集装置,通过静电纺丝法,制备PLGA管状支架(d=6mm)。研究不同工艺及乙醇处理对PLGA管状支架形貌结构、微细结构和生物力学性能的影响。结果表明:当纺丝液质量分数为7%,滚轴转速为1500r/min时,可制得纤维形貌规整、分布均匀,直径为(1660±218)nm,孔隙率为80.6%的PLGA管状支架;经乙醇处理后,其孔隙率减小,玻璃化温度和热分解温度提高,热稳定性增强;断裂强度、爆破强度及缝合强力均显著提高。
The PLGA tubular scaffold (d=6 mm) was fabricated via electrospinning with biocompatible and biodegradable PLGA as the material, a high-speed rotating mandrel-type as the collector. The morphology, microstructure and biomechanical affected by technical parmeters were investigated. The results showed that the PLGA tubular scaffolds with good morphology were obtained when spinning solution concentration was 7 % and the rotating mandrel's speed was 1 500 r/min. At the same time, the PLGA tubular scaffold's porosity was 80.6 % and fiber diameter was (1 660±218)nm. After organic alcohol treatment, the porosity of PLGA tubular scaffold decreased, its' glass temperature and thermal decomposition temperature increased, while PLGA tubular scaffold's thermal stability enhanced, the breaking intensity, burst pressure and suture strength of the PLGA tubular scaffolds were significantly improved.
关键词(KeyWords):
静电纺丝;PLGA;管状支架;生物力学性能
electrospinning, PLGA, tubular scaffold, biomechanical property
基金项目(Foundation): 江苏省高校重点实验室开放研究课题(KJS0817)
作者(Author):
李双燕,王曙东,张幼珠,王红卫,邱鹏
LI Shuang-yan1, WANG Shu-dong1,2, ZHANG You-zhu1, WANG Hong-wei1
参考文献(References):
- [1]Deutsch M,Meinhart J,et al.Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in100patients:a9-year experience[J].Surgery,1999,126:847-855.
- [2]Eiselt P,Kim BS,et a1.Development of teachologies aiding large-tissue engineering[J].Bio-technology Progress,1998,14(1):134-140.
- [3]Duan B,Yuan X Y,et al.A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning[J].European Polymer Journal,2006,42:2013-2022.
- [4]Young You,Byung-Moo Min,et al.In vitro degradation behavior of electrospun polyglycolide,polylactide,and poly(lactide-co-glycolide)[J].Journal of Applied Polymer Science,2005,95:193-200.
- [5]Li M Y,Mondrions M J,et al.Co-electrospun poly(lactide-co-glycolide),gelatin,and elastin blends for tissue engineering scaffolds[J].J Biomed Mater Res,2006,79A:963-973.
- [6]Inanc B L,Arslan Y E,et al.Periodontal ligament cellular structures engineered with electrospun poly(DL-lactide-co-glycolide)nanofibrous membrane scaffolds[J].J Biomed Mater Res,2009,90A:186-195.
- [7]C M Vaz,S Van Tuijl,C V C Bouten.Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J].Acta Biomaterialia,2005,1(5):575-582.
- [8]Schaner P J,Martin N D,et al.Decellularized vein as a potential scaffolds for vascular tissue engineering[J].J Vasc Surg,2004,40:146-153.
- [9]Kim Hm,Kokubo T,et al.Bioactive macroporous titanius surface layer on titanium substrate[J].Journal of Biomedical Materials Research,2000,52:553-557.
- [10]Billiar K,Murray J,et al.Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa[J].J Biomed Mater Res,2001,56:101-108.