纤维混凝土抗拉试验的颗粒流软件数值模拟Numerical Simulation of Tensile Test of Fiber Concrete by Particle Flow Software
曹周阳,何康熙,关晓迪
CAO Zhou-yang,HE Kang-xi,GUAN Xiao-di
摘要(Abstract):
基于颗粒流软件PFC~(2D),模拟了纤维混凝土试样的劈裂抗拉破坏过程,分析了摩擦因数、pb_ten参数、pb_coh参数以及宽度比对纤维混凝土数值试样力学性能的影响。试验结果表明:摩擦因数和pb_coh参数对数值试样的弹性模量和劈裂抗拉强度影响不大;pb_ten参数对数值试样的力学性能的影响较大;随着宽度比的增加,数值试样的抗拉强度和变形模量都增大,当宽度比较大时,垫条周围会出现几条细小裂缝,然后向中部集中,进而在中部形成一条贯通的主裂缝。
Based on the particle flow software PFC~(2D), the splitting and tensile failure process of fiber reinforced concrete samples was simulated, and the effects of friction coefficient, pb_ten parameter, pb_coh parameter and width ratio on the mechanical properties of numerical fiber reinforced concrete samples were analyzed. The results show that the friction coefficient and pb_coh parameter have little effect on the elastic modulus and splitting tensile strength of numerical samples, The pb_ten parameter has a great influence on the mechanical properties of the numerical samples. As the width ratio increases, the tensile strength and deformation modulus of the numerical samples increase. When the width ratio is large, several small cracks will appear around the gasket and then concentrate in the middle, and then form a through main crack in the middle.
关键词(KeyWords):
纤维混凝土;数值模拟;颗粒流软件;细观参数;力学性能
fiber concrete;numerical simulation;particle flow software;meso-structure parameter;mechanical property
基金项目(Foundation): 河南省科技攻关项目(212102310967)
作者(Author):
曹周阳,何康熙,关晓迪
CAO Zhou-yang,HE Kang-xi,GUAN Xiao-di
DOI: 10.16090/j.cnki.hcxw.2022.09.015
参考文献(References):
- [1]陈君君,关晓迪,马迪.不同纤维对再生混凝土材料性能的影响[J].合成纤维, 2022, 51(5):70-75.
- [2]陈君君,关晓迪,魏欢欢,等.纤维混凝土无侧限压缩试验离散元分析[J].合成纤维, 2022, 51(4):58-64.
- [3]孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J].硅酸盐学报, 2000(2):95-99, 104.
- [4] FELDMAN D, ZHENG Z. Synthethic fibres for fibre concrete composites[J]. Material research Society Symposia Proceedings, 1993:123-128.
- [5] BANTHIA N. Micro-fiber reinforced cement composites. II. Flexural response and fracture studies[J]. Canadian Journal of Civil Engineering,1995, 22(4):668-682.
- [6] HUBERTOVA M, HELA R. Lightweight fiber reinforced concrete[J].Solid State Phenomena, 2016, 249:28-32.
- [7] ZHOU J M, MENG G W, HU Y Y, et al. Experimental study on fiber concrete lining in tunnel with seismic dynamic response[J]. Advanced Materials Research, 2013, 671-674:1126-1130.
- [8]罗洪林,杨鼎宜,周兴宇,等.聚丙烯纤维长径比对混凝土力学性能的影响研究[J].混凝土, 2019(9):25-30.
- [9]张悦.聚丙烯纤维混凝土力学性能及损伤破坏形态研究[D].西安:西安理工大学, 2019.
- [10]雷江.聚丙烯纤维碾压混凝土的性能试验分析及其在路面大修施工中的应用[J].公路工程, 2018, 43(6):174-177, 246.
- [11] CUNDALL P A, AND STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 2008, 30(3):331-336.
- [12] MONTEIRO A N, LEMOS J V. A generalized rigid particle contact model for fracture analysis[J]. International journal for numerical and analytical methods in geomechanics, 2005, 29:269-285.
- [13] ZHENG Z S, WANG S, ZHENG S, et al. Numerical simulation of particle flow for high velocity compaction based on discrete element method[J]. Rare Metal Materials and Engineering, 2010, 39(12):2132-2136.
- [14] POSIEL R, PREH A. 3D landslide run out modeling using the particle flow code PFC(3D)[J]. Landslides and engineered slopes:from the past to the future, 2008:873-879.
- [15] GORODKOV S, LI L, HOLT R M. Stress path during coring:a discrete particle modeling approach[J]. Proceeding and Monographs in Engineering, Water and Earth Sciences, 2006:541-549.
- [16] PROCHAZKA P P. Application of discrete element methods to fracture mechanics of rock bursts[J]. Engineering fracture mechanics, 2004, 7(1):601-618.