多孔涤纶的制备工艺及性能Preparation Technology and Properties of Porous Polyester Fiber
丁玎,吴倩,王新,王进美
DING Ding,WU Qian,WANG Xin,WANG Jin-mei
摘要(Abstract):
为获得具有孔隙结构的涤纶,利用碱处理的方法将具有中空结构的涤纶浸入NaOH溶液中,通过NaOH对涤纶的水解作用在中空涤纶的表面产生刻蚀,从而形成多孔的纤维结构。分别考察了不同质量浓度、温度及浸渍时间条件下,所形成多孔纤维的形貌特征、孔隙率、力学性能及所制备织物的亲水性。结果表明,采用碱处理法能够有效地制备多孔涤纶,孔径呈微米级(150μm)、亚微米级(150 nm)的多尺度分布。最优的制备工艺参数为:NaOH溶液质量浓度200 g/L、温度70℃、浸渍时间1.5 h。
In order to obtain polyester fibers with a pore structure, the polyester fibers with a hollow structure are immersed in NaOH solution by alkali treatment, and the surface of the hollow polyester fiber is etched by the hydrolysis of NaOH on the polyester, thereby forming a porous fiber structure. The morphological characteristics, porosity, mechanical properties and hydrophilicity of the fabric prepared under different mass concentration, temperature, and immersion time conditions were investigated. The results show that the alkali treatment method can effectively prepare porous polyester fibers with a multi-scale distribution of micro-level(150 μm) and sub-micro-level(150 nm). The optimal preparation process parameters are NaOH solution concentration is 200 g/L, the temperature is 70 ℃ and the immersion time is 1.5 h.
关键词(KeyWords):
涤纶;碱处理;多孔纤维;孔隙率;亲水性
polyeser fiber;alkali treatment;porous fiber;porosity;hydrophilicity
基金项目(Foundation): 中国纺织工业联合会科技指导性项目(2020043)
作者(Author):
丁玎,吴倩,王新,王进美
DING Ding,WU Qian,WANG Xin,WANG Jin-mei
DOI: 10.16090/j.cnki.hcxw.2022.01.016
参考文献(References):
- [1]刘培生.多孔材料引论[M]. 2版北京:清华大学出版社, 2013.
- [2]胡正龙.多孔材料的力学性能研究与应用[J].居舍, 2020(30):22-23.
- [3] PENG Y C, CHEN J, A Y, SENG P, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability,2018, 1(2):105-112.
- [4]彭敏,赵晓明.纺织材料的吸声隔声机理及研究进展[J].成都纺织高等专科学校学报, 2016, 33(4):173-177.
- [5] PRASAD S U, BANWARI B, SREEKUMAR T V, et al. Preparation and characterization of porous polyester fibres by salt leaching method[J].Journal of The Textile Institute, 2013, 104(4):351-356.
- [6] YARYSHEVA A, KHAVPACHEV M, BAGROV D, et al. Breathable materials and hybrid nanocomposites with antimicrobial activity based on porous poly(ε-caprolactone)obtained via environmental crazing[J]. Macromolecular Materials and Engineering, 2020, 306(3):687-693.
- [7] JIANG S, ZHANG M, JIANG W, et al. Multiscale nanocelluloses hybrid aerogels for thermal insulation:The study on mechanical and thermal properties[J]. Carbohydrate Polymers, 2020, 247:116701.
- [8] WANG L, ZHU Y, DU C, et al. Advances and challenges in metal-organic framework derived porous materials for batteries and electrocatalysis[J]. Journal of Materials Chemistry A, 2020(8):24895-24919.
- [9]王慧云,王萍,李媛媛,等.中空多孔异形聚丙烯腈纤维的制备及其性能[J].纺织学报, 2021, 42(3):50-55.
- [10]王玉洁.仿生多孔隔热纤维及织物[D].杭州:浙江大学, 2020.
- [11] RWEI S P. Formation of hollow fibers in the melt-spinning process[J]. Journal of Applied Polymer ence, 2001, 82(12):2896-2902.
- [12]刁彩虹,肖长发,胡晓宇,等.亲水性多孔聚丙烯腈纤维及其制品的舒适性[J].纺织学报, 2010, 31(7):11-15.
- [13] ZHAO Y, CAO X Y, JIANG L. Bio-mimic multichannel microtubesby a facile method[J]. Journal of the American Chemical Society, 2007,129(4):764-765.
- [14] YU Y, FU F, SHANG L, et al. Bioinspired helical microfibers from microfluidics[J]. Advanced Materials, 2017, 29(18):1605765.
- [15]崔文豪,郭晓玲,崔贞,等.涤纶织物碱减量改性工艺及其染色性能[J].纺织高校基础科学学报, 2019(3):231-236.