聚苯胺/涤棉导电纱的制备及其性能表征Preparation and Performance Characterization of Polyaniline/Polyester-Cotton Conductive Yarn
王卫,林思伶,马珮珮,董子靖,李龙
WANG Wei,LIN Si-ling,MA Pei-pei,DONG Zi-jing,LI Long
摘要(Abstract):
以涤棉纱为基材、盐酸为掺杂剂、过硫酸铵为氧化剂,采用原位聚合方法制备聚苯胺/涤棉导电纱线。通过扫描电子显微镜、VHX-5000超景深三维显微系统、傅里叶红外光谱仪、热重分析仪、X射线衍射分别对导电纱的结构和性能进行了表征。结果表明:聚苯胺原位聚合涤棉导电纱线的电阻先随着过硫酸铵浓度的增加而减小,在过硫酸铵浓度为0.4 mol/L时,导电纱的电阻达到最低值,为93.5 MΩ/cm,之后纱线电阻又随过硫酸铵浓度的增加而增加;聚苯胺处理对涤棉纱的晶型结构没有明显影响;导电纱初始分解温度低于涤棉纱,最终残炭量基本相同。
The in-situ polymerization method was used to prepare polyaniline/polyester-cotton conductive yarn with polyester-cotton yarn as the base material, hydrochloric acid as dopant and ammonium persulfate as the oxidant. The scanning electron microscope, VHX-5000 three-dimensional ultra-depth field microscopy, Fourier infrared spectroscopy, thermogravimetric analyzer, X-ray diffractometer were used to characterize the structure and properties of the conductive yarns. The results show that the resistance of conductive yarn first decreases with the increasing of ammonium persulfate concentration, when the concentration of ammonium persulfate is 0.4 mol/L, the resistance of conductive yarn reaches the lowest value of 93.5 MΩ/cm.Then the resistance of conductive yarn increases with the increase of ammonium persulfate concentration.Polyaniline treatment has no obvious effect on the crystal structure of polyester-cotton yarn. The initial decomposition temperature of conductive yarn is lower than that of polyester-cotton yarn, and the final carbon residue is basically the same.
关键词(KeyWords):
原位聚合;聚苯胺;涤棉纱;性能
in-situ polymerization;polyaniline;polyester-cotton yarn;performance
基金项目(Foundation): 陕西省教育厅科研计划项目(20JK0652)
作者(Author):
王卫,林思伶,马珮珮,董子靖,李龙
WANG Wei,LIN Si-ling,MA Pei-pei,DONG Zi-jing,LI Long
DOI: 10.16090/j.cnki.hcxw.2022.07.009
参考文献(References):
- [1] YAN T, WANG Z, PAN Z J. Flexible strain sensors fabricated using carbon-based nanomaterials:A review[J]. Current Opinion in Solid State&Materials Science, 2018, 22(6):213-228.
- [2]彭军,李津,李伟,等.柔性可穿戴电子应变传感器的研究现状与应用[J].化工新型材料, 2020, 48(1):57-62.
- [3] ZHENG Y J, LI Y L, ZOU Y J, et al. High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit.[J]. ACS Applied Materials&Interfaces, 2020, 12(1):1474-1485.
- [4] WANG Y M, LIU A P, HAN Y Q, et al. Sensors based on conductive polymers and their composites:A review[J]. Polymer International, 2020,69(1):7-17.
- [5] ISLAM G M N, ALI A, COLLIE S. Textile sensors for wearable applications:a comprehensive review[J]. Cellulose, 2020. doi:org/10.1007/s10570-020-03215-5.
- [6] HU J L, MENG H, LI G Q, et al. A review of stimuli-responsive polymers for smart textile applications[J]. Smart Materials and Structures,2012, 21(5):053001.
- [7] SUBHANKAR M, AROBINDO C. Conductive polymer-based electroconductive textile composites for electromagnetic interference shielding:A review[J]. Journal of Industrial Textiles, 2018,47(8). doi:10.1177/1528083716670310.
- [8] CHEN T, ZHANG S, LIN Q, et al. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface[J]. Nanoscale, 2020, 12(41):21271-21279.
- [9] DU X, TIAN M, SUN G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications[J]. ACS Applied Materials&Interfaces, 2020, 12(50):55876-55883.
- [10] YIN Y, MO J, FENG J. Conductive fabric patch with controllable porous structure and elastic properties for tissue engineering applications[J].Journal of Materials Science, 2020, 55(36):17120-17133.
- [11] PRAGYE A, DEOGAONKAR-BARIDE S. Effect of yarn interlacement pattern on the surface electrical conductivity of intrinsically conductive fabrics[J]. Synthetic Metals, 2020, 268:116512.
- [12] XIE Y. Fabrication and charge storage capacitance of PPy/TiO2/PPy jacket nanotube array[J]. Journal of Polymer Engineering, 2020, 41(2):137-143.
- [13] Hu R F, ZHENG J P. Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor[J]. Journal of Power Sources, 2017, 364:200-207.
- [14] WANG X H, TANG Q, MU Y H, et al. Preparation of PANI-PVA composite conductive coatings doped with different acid[J]. Advances in Polymer Technology, 2017, 36(4):502-506.
- [15]任文,张国立,闫涵,等.超疏水聚苯胺/聚四氟乙烯复合膜的制备及油-水乳液分离性能[J].高等学校化学学报, 2020, 41(4):846-854.
- [16]张东华,王杨勇,井新利,等.聚苯胺的酶促合成[J].高分子材料科学与工程, 2004(6):11-14.
- [17]韩潇,洪剑寒,惠林,等.导电涤纶纱连续制备工艺与性能[J].纺织学报, 2018, 39(2):20-25.
- [18]缪润伍,周歆如,汪旭甜,等.高耐久性蚕丝/聚苯胺复合导电纱的制备与性能[J].丝绸, 2021, 58(4):1-5.
- [19] INGOLE M, GULHANE S, UBARHANDE D,等.苯胺原位聚合开发导电棉织物[J].国际纺织导报, 2015, 43(11):51-52.
- [20]金俊平,李昕,张德权,等.掺杂/脱掺杂诱导的聚苯胺织物浸润性开关[J].高分子学报, 2010(2):192-198.
- [21]周兆懿.聚苯胺/棉复合织物的制备及其性能[J].印染, 2011, 37(20):5-8.
- [22]邢亚林.聚苯胺和氮化硼协效阻燃棉布的制备及性能研究[J].火灾科学, 2021, 30(3):160-164.