左旋多巴胺处理对芳纶表面结构与性能的影响Effects of L-3,4-Dihydroxyphenylalanine on Surface Microstructure and Properties of Aramid Fibers
张晶威,董杰,滕翠青
ZHANG Jing-wei,DONG Jie,TENG Cui-qing
摘要(Abstract):
利用L-3,4-二羟基苯丙氨酸(L-DOPA)的氧化自聚合,在杂环芳纶表面修饰聚L-3,4-二羟基苯丙氨酸(PDOPA)活性涂层来提高芳纶的表面活性及耐紫外辐照性能。结果表明:改性后芳纶表面粗糙度显著提高,同时,PDOPA涂层上大量的羧基、羟基等活性单元均有利于增强与环氧树脂的机械锁合力,改性后芳纶/环氧树脂复合材料的界面剪切强度提高了32.0%。此外,上述改性过程对杂环芳纶本身力学性能影响较小,纤维的拉伸强度保持率可以达到100%,基本实现了无损改性。同时,由于PDOPA的保护作用,改性后芳纶的耐紫外辐射性能显著提高;经过168 h紫外线辐照处理后,其拉伸强度保持率可达到92.5%,显著提升了杂环芳纶的耐紫外线辐照特性。
The surface of the heterocyclic aramid fibers was coated with L-3,4-dihydroxyphenylalanine(LDOPA), which could be oxidized and self-polymerized to poly L-3,4-dihydroxyphenylalanine(PDOPA) to improve the surface activity and UV-resistance of aramid fibers. The microstructure, chemical properties of modified fibers and interfacial properties to the epoxy resin were investigated by scanning electron microscopy, X-ray photoelectron spectroscopy and microsphere debonding experiments. As a result, the surface roughness of the modified aramid fibers is significantly improved and achieved a strong mechanical interlock with the polymer matrix. The interfacial shear strength of modified aramid fibers/epoxy composites increases by 32.0% and the tensile strength retention rate of the modified aramid can reach 100%. The above modification process has little effect on the thermal stability and mechanical properties of aramid fibers, indicating it is a non-destructive modification method. Under the protection of PDOPA, the modified fibers possess excellent UV radiation resistance. The tensile strength retention rate of modified fibers reaches92.5% after 168 h of UV irradiation.
关键词(KeyWords):
芳纶;L-3,4-二羟基苯丙氨酸;界面性能;耐紫外线辐照性能
aramid fiber;L-3,4-dihydroxyphenylalanine;interfacial property;UV-resistance
基金项目(Foundation): 中国纺织工业联合会应用基础研究项目(J201803)
作者(Author):
张晶威,董杰,滕翠青
ZHANG Jing-wei,DONG Jie,TENG Cui-qing
DOI: 10.16090/j.cnki.hcxw.2020.04.009
参考文献(References):
- [1]余艳娥,谭艳君.新型高性能纤维—芳纶[J].高科技纤维与应用,2004(5):37-39.
- [2] QIN M L, KONG H J, ZHANG K, et al. Simple synthesis of hydroxyl and ethylene functionalized aromatic polyamides as sizing agents to improve adhesion properties of aramidfiber/vinyl epoxy composites[J]. Polymers, 2017, 9(4):143.
- [3] PATTERSON B A, SODANO H A. Enhanced interfacial strength and UV shielding of aramid fiber composites through ZnO nanoparticle sizing[J]. Acs Applied Materials&Interfaces, 2016, 8(49):33963-33971.
- [4] WANG W, LI R, TIAN M, et al. Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine)functionalization[J]. ACS Applied Materials&Interfaces, 2013, 5(6):2062-2069.
- [5] SETHI S, RATHORE D K, RAY B C. Effects of temperature and loading speed on interface-dominated strength in fiber/polymer composites:An evaluation for in-situ environment[J]. Materials&Design, 2015, 65(10):617-626.
- [6] LU Z, HU W, XIR F, et al. Argon low-temperature plasma modification of chopped aramid fiber and its effect on paper performance of aramid sheets[J]. Journal of Applied Polymer Science, 2017, 134(34):45215.
- [7] XINH L X, LIU L, HUANG Y D, et al. Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J].Composites Part B:Engineering, 2015, 69, 50-57.
- [8] LIU L, HUANG Y D, ZHANG Z Q, et al. Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites[J]. Applied Surface Science, 2008, 254(9):2594-2599.
- [9] FAN W, TIAN H, WANG H, et al. Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment[J]. Polymer Testing, 2018, 72:147-156.
- [10] CHENG Z, ZHANG L, JIANG C, et al. Aramid fiber with excellent interfacial properties suitable for resin composite in a wide polarity range[J].Chemical Engineering Journal, 2018, 347:483-492.
- [11] FU S, YU B, DUAN L, et al. Combined effect of interfacial strength and fiber orientation on mechanical performance of short Kevlar fiber reinforced olefin block copolymer[J]. Composites Science and Technology,2015, 108:23-31.
- [12] ZHU X, YUAN L, LIANG G, et al. Unique surface modified aramid fibers with improved flame retardancy, tensile properties, surface activity and UV-resistance through in situ formation of hyperbranched polysiloxane-Ce0.8Ca0.2O1.8 hybrids[J]. Journal of Materials Chemistry A, 2015,3(23):12515-12529.
- [13] ZHU J J, YUAN L, GUAN Q B, et al. A novel strategy of fabricating high performance UV-resistant aramid fibers with simultaneously improved surface activity, thermal and mechanical properties through building polydopamine and graphene oxide bi-layer coatings[J]. Chemical Engineering Journal, 2016, 310:134-147.
- [14] SA R, YAN Y, WEI Z, et al. Surface modification of aramid fibers by bio-inspired poly(dopamine)and epoxy functionalized silane grafting[J].ACS Applied Materials&Interfaces, 2014, 6(23):21730-21738.
- [15] WAITE J H, QIN X. Poly phosphoprotein from the adhesive pads of Mytilus edulis[J]. Biochemistry, 2001, 40(9):2887.
- [16] JABER M, LAMBERT J F. A new nanocomposite:L-dopa/Laponite[J]. The Journal of Physical Chemistry Letters, 2009, 1(1):85-88.
- [17] LIU Y, AI K, LU L. Poly dopamine and its derivative materials:synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical Reviews, 2014, 114(9):5057-5115.
- [18] YU L, LIU X, YUAN W, et al. Confined flocculation of ionic pollutants by poly(L-dopa)-based polyelectrolyte complexes in hydrogel beads for three-dimensional, quantitative, efficient water decontamination[J].Langmuir, 2015, 31(23):6351-6366.
- [19] SóVáGóI, KáLLAY C, VáRNAGY K. Peptides as complexing agents:Factors influencing the structure and thermodynamic stability of peptide complexes[J]. Coordination Chemistry Reviews, 2012, 256(19-20):2225-2233.
- [20] EHLERT G J, SODANO H A. Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites[J].ACS Applied Materials&Interfaces, 2009, 1(8):1827-1833.
- [21] OU J, WANG J, LIU S, et al. Microtribological and electrochemical corrosion behaviors of polydopamine coating on APTS-SAM modified Si substrate[J]. Applied Surface Science, 2009, 256(3):894-899.
- [22] WATT A A R, BOTHMA J P, MEREDITH P. The supramolecular structure of melanin[J]. Soft Matter, 2009, 5(19):3754-3760.
- [23] JIANG J, ZHU L, ZHU L, et al. Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films[J].Langmuir, 2011, 27(23):14180-14187.