纤维素溶解体系研究进展Research Progress of Cellulose Dissolving System
韩宗保,王运利
HAN Zong-bao,WANG Yun-li
摘要(Abstract):
纤维素是自然界中一种非常丰富的天然高分子化合物。纤维素的溶解是将这种可再生资源有效转化为高附加值产品的关键步骤,其溶解体系所用溶剂分为衍生化溶剂和非衍生化溶剂。从这两方面简要介绍纤维素的溶解体系及其机制,并对各个溶剂体系的优缺点进行简要概述,预测未来纤维素溶解体系会朝着高效、节能、环保的方向发展。
Cellulose is a very abundant natural polymer compound in nature. The dissolution of cellulose is a key step to effectively transform this renewable resource into high value-added products. The solvent used in its dissolution system is divided into derivatized solvent and non-derivatized solvent. From these two aspects, the cellulose dissolution system and its mechanism are briefly introduced, and the advantages and disadvantages of each solvent system are briefly summarized. It is predicted that the cellulose dissolution system will develop in the direction of high efficiency, energy saving and environmental protection in the future.
关键词(KeyWords):
纤维素;溶解体系;衍生化溶剂;非衍生化溶剂
cellulose;dissolution system;derivatized solvent;non-derivatized solven
基金项目(Foundation): 湖北省中央引导地方科技发展专项基金(2020ZYYD038)
作者(Author):
韩宗保,王运利
HAN Zong-bao,WANG Yun-li
DOI: 10.16090/j.cnki.hcxw.2021.02.001
参考文献(References):
- [1] BHAT A H, IMRAN K, MOHD A U, et al. Cellulose an ageless renewable green nanomaterial for medical applications:An overview of ionic liquids in extraction, separation and dissolution of cellulose[J]. International Journal of Biological Macromolecules, 2019,129(12):750-777.
- [2] YASMIN J D, ALEXANDER K, SUMAN S, et al. Theoretical and experimental study of dissolution mechanism of cellulose[J]. Journal of Molecular Liquids, 2020, 312(10):113450.
- [3] HUANG J C, ZHONG Y. Distinctive viewpoint on the rapid dissolution mechanism ofα-chitin in aqueous potassium hydroxide-urea solution at low temperatures[J]. Macromolecules, 2020, 53(13):5588-5598.
- [4] MENG Y, FENG Z L, XU X J, et al. Recent advances in chain conformation and bioactivities of triple-helix polysaccharides[J]. Biomacromolecules, 2020, 21(5):1653-1677.
- [5] LIU G, SUN H, LIU G K, et al. A molecular dynamics study of cellulose inclusion complexes in NaOH/urea aqueous solution[J]. Carbohydrate Polymers, 2018, 185(1):12-18.
- [6] GHASEMI M, ALEXANDRIDIS P, TSIANOU M. Cellulose dissolution:insights on the contributions of solvent-induced decrystallization and chain disentanglement[J]. Cellulose, 2017, 24(15):571-590.
- [7] LIU J J, ZHANG J M, ZHANG B Q, et al. Determination of intrinsic viscosity-molecular weight relationship for cellulose in BmimAc/DMSO solutions[J]. Cellulose, 2016, 23(6):2341-2348.
- [8] BLACKWELL J, KOLPAK F J, GARDNER K H. Chapter 4, Structures of native and regenerated celluloses[M]. Washington:American Chemical Society, 1977, 42-55.
- [9] RAGHUWANSHI V S, COHEN Y, GARNIER G, et al. Cellulose dissolution in ionic liquid:ion binding revealed by neutron scattering[J]. Macromolecules, 2018, 51(19):7649-7655.
- [10] ISOGAI1 A, ISHIZU1 A, NAKANO1 J, et al. Chapter 17, Intra-and intermolecular hydrogen bonds in native, mercerized, and regenerated celluloses reflection in patterns of solubility and reactivity[M]. Washington:American Chemical Society, 1987:293-301.
- [11] GHASEMI M, ALEXANDRIDIS P, TSIANOU M. Cellulose dissolution:insights on the contributions of solvent-induced decrystallization and chain disentanglement[J]. Cellulose, 2017, 24(2):571-590.
- [12] GHASEMI M, TSIANOU M, ALEXANDRIDIS P. Assessment of solvents for cellulose dissolution[J]. Bioresource Technology, 2017, 228(25):330-338.
- [13] ANTON B, FRIEDERIKE S, DUCHEMIN B, et al. Toward a facile fabrication route for all-cellulose composite laminates via partial dissolution in aqueous tetrabutylphosphonium hydroxide solution[J]. Composites Part A:Applied Science and Manufacturing, 2021, 140(13):106148.
- [14] MEDRONHO B L. Competing forces during cellulose dissolution:From solvents to mechanisms[J]. Current Opinion in Colloid&Interface Science, 2014, 19(1):32-40.
- [15]刘刚.基于分子动力学研究纤维素在碱/脲溶液体系中的溶解行为[D].济南:山东大学, 2020.
- [16] WANG H, GURAU G, ROGERS R D. Ionic liquid processing of cellulose[J]. Chemical Society Reviews, 2012, 41(4):1519-1537.
- [17] JACOBSON R A. Carbamic esters from urea[J]. Journal of the American Chemical Society, 1938, 60(8):1742-1744.
- [18] TENG Y, YU G M, FU Y F, et al. The preparation and study of regenerated cellulose fibers by cellulose carbamate pathway[J]. International Journal of Biological Macromolecules, 2018, 107(7):383-392.
- [19] AYYED A J, DESHMUKH N A, Pinjari D V, et al. A critical review of manufacturing processes used in regenerated cellulosic fibers:viscose,cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell[J]. Cellulose, 2019, 26(5):2913-2940.
- [20] PENG H, DAI G, WANG S, et al. The evolution behavior and dissolution mechanism of cellulose in aqueous solvent[J]. Journal of Molecular Liquids, 2017, 21(6):959-966.
- [21] MYSTEK K, REID M S, LARSSON P A, et al. In situ modification of regenerated cellulose beads:creating all-cellulose composites[J]. Industrial&Engineering Chemistry Research, 2020, 59(7):2968-2976.
- [22]张恒.玉米秸秆碱法制浆细小组分制备再生纤维素膜的研究[D].昆明:昆明理工大学, 2019.
- [23] JOHNSON D L. Compounds dissolved in cyclic amine oxides:US3447939[P]. 1969-06-03.
- [24] GAGNAIRE D, MANCIER D, VINCENDON M. Cellulose organic solutions:A nuclear magnetic resonance investigation[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1980, 18(5):13-15.
- [25] NGUYEN H V D, VRIES R D, STOYANOV S. Natural deep eutectics as"green"cellulose co-solvent[J]. ACS Sustainable Chemistry&Engineering, 2020, 37(8):14166-14178.
- [26] SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of the American chemical society,2002, 124(18):4974-4975.
- [27] NAZARI B, UTOMO N, COLBY R H. The effect of water on rheology of native cellulose/ionic liquids solutions[J]. Biomacromolecules, 2017, 18(9):2849-2857.
- [28] SEOUD O A E, KOSTAG M, JEDVERT K, et al. Cellulose in ionic liquids and alkaline solutions:advances in the mechanisms of biopolymer dissolution and regeneration[J]. Polymers, 2019, 11(6):1917.
- [29] SHAKEEL A, MAHMOOD H, FAROOQ U, et al. Rheology of pure ionic liquids and their complex fluids:A review[J]. ACS Sustainable Chemistry&Engineering, 2019, 16(7):13586-13626.
- [30] YANG Y, ZHANG Y, DAWELBEIT A, et al. Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution[J]. Cellulose, 2017, 24(6):4123-4137.
- [31] LASZKIEWICZ B, WCISLO P. Sodium cellulose formation by activation process[J]. Journal of Applied Polymer Science, 1990, 39(2):415-425.
- [32] CAI J, ZHANG L. Unique Gelation Behavior of Cellulose in NaOH/urea aqueous solution[J]. Biomacromolecules, 2006, 7(1):183-189.
- [33] CAI J, ZHANG L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions[J]. Macromolecular Bioence, 2005, 5(6):539-548.
- [34] HU T, KANG X. Green and economical strategy for spinning robust cellulose filaments[J]. ACS Sustainable Chemistry&Engineering, 2020,39(8):14927-14937.