GFRP层合板在湿热环境和碱性腐蚀介质中的老化行为Aging Behavior of GFRP Laminates in Hydrothermal Environment and Alkaline Corrosive Media
苏英贤,孙耀宁,刘伟,孙健,代礼葵
SU Ying-xian,SUN Yao-ning,LIU Wei,SUN Jian,DAI Li-kui
摘要(Abstract):
研究了玻璃纤维增强环氧乙烯基酯树脂基复合材料(GFRP层合板)在湿热和碱性腐蚀介质中的老化行为,测试了不同老化时间后材料的吸湿率和抗弯强度,通过扫描电子显微镜观察了复合材料的表面、纤维和弯曲断口形貌在不同老化时间下的变化,并且通过红外光谱和热重分析仪分析了复合材料在介质老化中的化学变化和初始分解温度的变化。结果表明:在湿热环境和碱性腐蚀介质中,复合材料吸湿率均随老化时间延长而增大,纤维/基体界面结合紧密度随吸湿率的增加而下降,碱溶液下的吸湿率高于湿热条件下的吸湿率;树脂基体的水解、玻璃纤维的腐蚀降解、纤维/基体脱黏、树脂大分子链间结合力的破坏和树脂交联密度的降低是材料性能下降的主要原因。
The aging behavior of glass fiber reinforced epoxy vinyl ester resin composite(GFRP) in hydrothermal environment and in alkaline corrosive medium was studied. The moisture absorption rate and flexural strength after different periods of aging time were tested. Scanning electron microscopy was used to observe the changes of surface, fiber and bending morphology of samples under different aging time. The chemical changes and initial decomposition temperature were analyzed by infrared spectroscopy and thermo gravimetric analysis. The results show that in the hydrothermal condition and alkaline corrosive medium,the moisture absorption rate of the composite increases with the aging time, the fiber/matrix interface tightness decreases with the increase of moisture absorption rate, and the moisture absorption rate in the alkali solution is larger than that in the hydrothermal. Hydrolysis of resin matrix, corrosion degradation of glass fiber, deboning of fiber/matrix, destruction of binding force between macromolecular chains of resin and reduction of cross linking density are the main reasons for the deterioration of material properties.
关键词(KeyWords):
复合材料;介质老化;湿热老化;吸湿率;抗弯强度;热稳定性
composite material;medium aging;hydrothermal aging;moisture absorption rate;bending strength;heat stability
基金项目(Foundation): 国家级大学生创新创业训练计划项目(201910755033)
作者(Author):
苏英贤,孙耀宁,刘伟,孙健,代礼葵
SU Ying-xian,SUN Yao-ning,LIU Wei,SUN Jian,DAI Li-kui
DOI: 10.16090/j.cnki.hcxw.2021.05.012
参考文献(References):
- [1]蒋宝坤,张渲铃,李映辉.湿热环境对旋转复合材料梁摆振特性的影响[J].复合材料学报, 2015, 32(2):579-585.
- [2]左晓玲,张道海,罗兴,等.长玻纤增强复合材料老化研究进展及防老化研究[J].塑料工业, 2013, 41(1):18-21, 66.
- [3] BOUKHOULDA F B, GUILLAUMAT L, LATAILLADE J L, et al. Aging-impact coupling based analysis in hygrothermal environment[J].Materials and Design, 2011, 32(7):4080-4087.
- [4]陈达,肇研,罗云烽,等.循环湿热环境下碳纤维复合材料界面性能[J].材料科学与工艺, 2012, 20(6):1-6.
- [5]张利军,肇研,罗云烽,等.湿热循环对CCF300/QY8911复合材料界面性能的影响[J].材料工程, 2012(2):25-29, 49.
- [6]刘淑峰,程小全,包建文.湿热环境对树脂基复合材料性能影响的分析[J].高分子材料科学与工程, 2014, 30(9):183-190.
- [7]谢可勇,李晖,孙岩,等.湿热老化对纤维增强树脂基复合材料性能的影响及其机理[J].机械工程材料, 2014, 38(8):1-5, 107.
- [8]高坤,史汉桥,孙宝岗,等.湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J].复合材料学报, 2016, 33(6):1147-1152.
- [9]马少华,许赞,许良,等.湿热-高温循环老化对碳纤维增强双马树脂基复合材料界面性能的影响[J].高分子材料科学与工程, 2018, 34(3):54-59, 66.
- [10]管清宇,李卫平.湿热环境对7781/CYCOM 7701玻璃纤维/环氧复合材料典型力学性能的影响[J].复合材料学报, 2018, 35(12):3288-3297.
- [11]薛伟辰,刘亚男,付凯,等.碱和海水环境下GFRP筋的抗拉性能加速老化试验研究[J].华北水利水电大学学报:自然科学版, 2015, 36(1):38-42.
- [12]李趁趁,于爱民,王英来.模拟混凝土碱性环境下FRP筋的耐久性[J].建筑科学, 2013, 29(1):47-51.
- [13]周俊龙,等,玄武岩纤维增强塑料筋耐腐蚀性研究[J].土木建筑与环境工程, 2011(S1):218-222.
- [14]吴敬宇,成贵军,李惠.玄武岩纤维及其复合筋的耐久性能研究.玻璃钢/复合材料, 2011(5):58-61.
- [15]张光超.多因素偶合作用下FRP耐腐蚀性能试验研究[D].南京:东南大学, 2012.
- [16]张晓云,曹东,陆峰,等. T700/5224复合材料在湿热环境和化学介质中的老化行为[J].材料工程, 2016, 44(4):82-88.
- 复合材料
- 介质老化
- 湿热老化
- 吸湿率
- 抗弯强度
- 热稳定性
composite material - medium aging
- hydrothermal aging
- moisture absorption rate
- bending strength
- heat stability