石墨烯包覆硅藻土/PP复合母粒流变行为的研究Study on Rheological Behavior of Graphene-Coated Diatomite/Polypropylene Composite Masterbatch
陈彦坤,王彪
CHEN Yan-kun,WANG Biao
摘要(Abstract):
以一步烧结法制备的石墨烯包覆硅藻土(G-DM)为填料,以聚丙烯(PP)为基体,通过熔融共混法制备得到G-DM/PP复合母粒。采用扫描电镜、透射电镜、拉曼光谱仪和X射线衍射仪等对G-DM与G-DM/PP的微观结构进行了表征,并通过旋转流变仪研究了不同G-DM含量对G-DM/PP流变行为的影响。结果表明:一步烧结法可制得由4~8层石墨烯包覆的颗粒状硅藻土,石墨烯的层间距为0.336 nm,石墨化程度较高;在G-DM/PP复合母粒中,G-DM具有很好的分散性。在低频区,G-DM/PP呈现出“非末端效应”。当G-DM少量加入时,对体系黏性影响较大;含量进一步增加时,体系的黏弹性接近于纯PP。当G-DM质量分数为5%时,达到体系产生“滚珠效应”的临界值,复数黏度有所下降,具有更好的加工成型性能;当G-DM质量分数小于5%时,加工成型参数类似于纯PP。
Graphene-coated diatomite/polypropylene(G-DM/PP) composite masterbatch with graphenecoated diatomite(G-DM) which synthesized by one-step pyrolysis method as filler and polypropylene(PP)as matrix material was prepared by melt blending method. The microstructure of G-DM and G-DM/PP was characterized by scanning electron microscope, transmission electron microscope, Raman spectroscope and X-ray diffractometer. The effects of G-DM content on the rheological behavior of G-DM/PP composites were analyzed by a rotational rheometer. The results show that 4~8 layers of graphene-coated diatomite particles can be prepared by the one-step pyrolysis method. The layer spacing of graphene is 0.336 nm, and the graphitization degree is high. G-DM has good dispersion in GDM/PP composite masterbatch. In the lowfrequency region, G-DM/PP shows a 'non-terminal effect'. When a small amount of G-DM is added, the viscosity of the system is greatly affected; when the content is further increased, the viscoelasticity of the system is close to that of pure PP. When the mass fraction of G-DM is 5%, the critical value of 'ball effect'is reached and the complex viscosity decreases lead to better processing performance. When the mass fraction of G-DM is less than 5%, the processing parameters are similar to pure PP.
关键词(KeyWords):
PP;硅藻土;石墨烯;复合母粒;流变行为
polypropylene;diatomite;graphene;composite masterbatch;rheological behavior
基金项目(Foundation): 国家重点研发计划(2020YFB15057000)
作者(Author):
陈彦坤,王彪
CHEN Yan-kun,WANG Biao
DOI: 10.16090/j.cnki.hcxw.2022.07.004
参考文献(References):
- [1]吕志平,王卫星,张友强,等.新型聚丙烯β晶型成核剂的制备及应用[J].中国塑料, 2009, 23(7):81-84.
- [2] SAFAIE B, YOUSSEFI M, REZARI B. The structure and fluorescence properties of polypropylene/carbon quantum dot composite fibers[J]. Polymer Bulletin, 2022, 79(23):1367-1389.
- [3]梁晓亮.汽车内饰中聚丙烯塑料的应用[J].塑料工业, 2019, 47(6):162-165.
- [4]孙凯,徐东东,娄小安,等.阻燃聚丙烯在家电行业中的应用和发展[J].塑料工业, 2013, 41(6):5-9.
- [5] WU W, LI X. Research and progress of modified polypropylene fibers[J]. Engineering Plastics Application, 2020, 48(1):128-131.
- [6] LUO D, XIAO D, HUANG W, et al. Review on hydrophilic modification of polypropylene hollow fiber membrane[J]. Plastics, 2015, 44(2):99-103.
- [7] DAI X, ZHANG Z, WANG C, et al. A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene[J]. Composites Part A:Applied Science and Manufacturing, 2013, 49:1-8.
- [8] HAERI S, RAMEZANZADEH B, ASGHARI M. A novel fabrication of a high performance SiO2-graphene oxide(GO)nanohybrids:Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids[J]. Journal of Colloid&Interface Science, 2017, 493(Complete):111-122.
- [9] WANG PH, SOURANGSU S, PRABHAKAR G, et al. Structure and rheological behavior of polypropylene interphase at high carbon nanotube concentration[J]. Polymer, 2018, 150:S0032386118305548-.
- [10] EESAEE M, DAVID E, DEMARQUETTE N. Effect of blending and nanoclay on dielectric properties of polypropylene[J]. Ieee Transactions on Dielectrics and Electrical Insulation, 2019, 26(5):1487-1494.
- [11] NOVOSELOV K, GEIM A, MOROZOV SV, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
- [12] GEIM A, NOVOSELOV K. The rise of graphene[J]. Nature Materials,2007, 6(3):183-191.
- [13] GEIM A. Graphene:Status and prospects[J]. Science, 2009, 324(5934):1530-1534.
- [14] NOVOSELOV K, FAL’KO V, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419):192-200.
- [15] SONG P, CAO Z, CAI Y, et al. Fabrication of exfoliated graphenebased polypropylene nanocomposites with enhanced mechanical and thermal properties[J]. Polymer, 2011, 52(18):4001-4010.
- [16] MILANI M, GONZALEZ D, QUIJADA R, et al. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization:Synthesis,characterization and fundamental properties[J]. Composites Science and Technology, 2013, 84:1-7.
- [17] CASTILLO R, CASTILLO L, CALLES A, et al. Experimental and computational conductivity study of multilayer graphene in polypropylene nanocomposites[J]. Journal of Materials Chemistry C, 2018, 6(27):7232-7241.
- [18] NING N, FU S, ZHANG W, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization[J]. Progress in Polymer Science, 2012, 37(10):1425-1455.
- [19]王彪,陈彦坤,李凤美.一种基于模板剂-固相碳源热裂解制备石墨烯的方法:CN108190865A[P]. 2018-02-08.
- [20] LI Z, LU C, XIA Z, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon, 2007, 45(8):1686-1695.
- [21] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):74011-74014.
- [22] ZHENG Q, CAO Y, DU M. Dynamic rheological behavior of polypropylene filled with ulatra-fine powdered rubber particles[J]. Chinese Journal of Polymer Science, 2004, 22(4):363-367.