高硅氧玻璃纤维改性泡沫炭复合材料的制备与性能Preparation and Properties of High Silica Glass Fiber Modified Carbon Foam Composites
赵建伟,王斌,叶子萌,侯林伟,王恒,卜天时
ZHAO Jian-wei,WANG Bin,YE Zi-meng,HOU Lin-wei,WANG Heng,BU Tian-shi
摘要(Abstract):
为了提高传统泡沫炭的力学性能和电磁屏蔽效能,分别以碳纳米管(CNTs)改性酚醛树脂为主要碳源,酚醛空心微球为闭孔相,短切高硅氧玻璃纤维作为添加相,制备了不同高硅氧玻璃纤维含量的多孔泡沫炭复合材料。通过扫描电子显微镜、万能试验机和网络分析仪,研究了玻璃纤维含量对泡沫炭复合材料的微观结构、力学性能、电磁屏蔽效能的影响。结果表明:引入质量分数0.9%的CNTs,泡沫炭复合材料的压缩强度最高,达21.3 MPa,较纯泡沫炭提升了16%;而玻璃纤维的加入并没有明显改善泡沫炭复合材料的压缩强度,但提高了其断裂韧性。质量分数8%的玻璃纤维掺杂泡沫炭复合材料的电磁屏蔽效能最好,在8.2~12.4 GHz下的均值为74 dB,较纯泡沫炭提升了76%。
In order to improve the mechanical properties and electromagnetic shielding efficiency of traditional carbon foams, porous carbon foam composites with different contents of chopped glass fibers were prepared, using CNTs modified resin as the main carbon source, phenolic hollow microspheres as closed phase,and chopped high silica glass fibers as fillers. Scanning electron microscope, universal testing machine and network analyzer were employed to investigate the influence of content of chopped high silica glass fibers on the microstructure, mechanical properties and electromagnetic shielding effectiveness of carbon foam composites, respectively. The results show that the carbon foam composites modified by CNTs with a mass fraction of 0.9% exhibite the highest compressive strength, up to 21.3 MPa, which is 16% higher than that of pure carbon foams. Compressive strength of composites can not be improved significantly, while the addition of glass fiber did not significantly improve the compressive strength of carbon foam composites, but increased the fracture toughness. The electromagnetic shielding efficiency of carbon foam composites doped with glass fiber with mass fraction of 8% is the best, the average electromagnetic shielding efficiency is 74 dB at 8.2~12.4 GHz, which is 76% higher than that of pure carbon foam.
关键词(KeyWords):
高硅氧玻璃纤维;泡沫炭;电磁屏蔽;压缩强度
high silica glass fiber;carbon foam;electromagnetic shielding;compressive strength
基金项目(Foundation): 陕西省科技厅重点研发计划项目(2020NY-154);; 陕西省教育厅重点科学研究计划协同创新中心项目(20JY027);; 陕西省大学生创新创业训练计划项目(202110709004)
作者(Author):
赵建伟,王斌,叶子萌,侯林伟,王恒,卜天时
ZHAO Jian-wei,WANG Bin,YE Zi-meng,HOU Lin-wei,WANG Heng,BU Tian-shi
DOI: 10.16090/j.cnki.hcxw.2022.12.017
参考文献(References):
- [1]PANK,SHIY,QIUJ.Deformationregulatedflexiblecarbonfoammatrix intrinsicmetamaterials[J]. Composites Communications, 2021, 27:100820.
- [2] STAHLFELD K W, BELMONT E L. Carbon foam production from lignocellulosic biomass via high pressure pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156:105115.
- [3]王永刚,林雄超,杨慧君,等.石墨化CVI泡沫碳的结构和性能[J].材料科学与工程学报, 2008, 3(26):365-368.
- [4] LI Q L, CHEN L, DING J J, et al. Open-cell phenolic carbon foam and electromagnetic interference shielding properties[J]. Carbon, 2016, 104:90-105.
- [5] WANG Y, KONG D Z, HUANG S Z, et al. 3D carbon foam-supported WS2nanosheets for cable-shaped flexible sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(23):10813-10824.
- [6] LIU X, WANG Y L, ZHAN L. Carbon foams prepared from coal tar pitch for building thermal insulation material with low cost[J]. Chinese Journal of Chemical Engineering, 2018, 26(2):415-420.
- [7] LEE C G, SONG M K, RYU J C, et al. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent[J]. Chemosphere, 2016, 153:1-9.
- [8] YANG Y F, HE J M. Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer[J]. Polymer Composites, 2015, 36(9):1584-1589.
- [9]卢杰,杨中甲,顾轶卓,等.玻璃纤维增强体形式对酚醛泡沫性能的影响[J].复合材料学报, 2014, 31(6):1394-1401.
- [10] CHOE J, KIM M, KIM J, et al. A microwave foaming method for fabricating glass fiber reinforced phenolic foam[J]. Composite Structures,2016, 152:239-246.
- [11] ZHOU J T, YAO Z J, CHEN Y X, et al. Thermomechanical analyses of phenolic foam reinforced with glass fiber mat[J]. Materials&Design,2013, 51:131-135.
- [12]杨小军,刘文凤.玻璃纤维增强复合材料用环氧树脂基体性能研究[J].热固性树脂, 2021, 36(1):27-30.
- [13]王亮,阎志敏,张海生,等.玻璃纤维增强尼龙复合材料的力学、耐油脂及耐渗透性能研究[J].塑料工业, 2021, 49(1):102-104, 136.
- [14]于海宁,高长星,王艳华.高性能纤维环氧树脂基复合材料力学性能分析研究[J].高科技纤维与应用, 2021, 46(1):63-67.
- [15]祖胜臻.碳纳米管/炭复合材料的制备及研究[D].北京:北京化工大学硕士学位论文, 2006.
- [16]康宇鹏,王斌,贺辛亥,等.多孔碳泡沫中碳纳米线的原位合成及性能[J].合成纤维, 2020, 49(12):49-53.
- [17]卢志华,孙康宁,任帅,等.多壁碳纳米管的表面修饰及分散性研究[J].稀有金属材料与工程, 2007, 36(S3):100-103.
- [18]罗晓宇.多尺度增强相改性碳泡沫复合材料的制备及其性能研究[D].西安:西安工程大学, 2020.
- [19]王志,崔学林,柴国强,等.碳纳米管改性钡酚醛树脂的制备及性能[J].消防科学与技术, 2017, 36(10):1415-1417.
- [20]田露,王琛,王斌,等.高硅氧玻璃纤维对多孔碳基复合材料力学性能的影响[J].纺织高校基础科学学报, 2017, 30(2):247-252.
- [21]张立伟.吸波屏蔽胶膜及其制备方法研究[J].集成电路应用,2020, 37(9):26-27.
- [22]罗霞.酚醛树脂基碳泡沫复合材料的制备及其电磁屏蔽性能研究[D].无锡:江南大学, 2018.