钴离子掺杂聚多巴胺/聚苯乙烯复合材料Cobaltion Deoped Polydopamine/Polystyrene Composites
李思汗,王彦,诸静,于俊荣,胡祖明
LI Si-han,WANG Yan,ZHU Jing,YU Jun-rong,HU Zu-ming
摘要(Abstract):
为实现多巴胺的高效聚合,将Co~(2+)引入多巴胺反应体系中,Co~(2+)的催化作用实现了多巴胺的快速聚合。在聚苯乙烯(PS)微球上黏附聚多巴胺(PDA),与不加金属离子的反应相比,当添加的CoCl_2·6H_2O对多巴胺的物质的量分数为40%时,得到相同PDA含量的复合微球的反应时间可以从16 h缩短至1 h,并且复合微球中PDA以及Co含量随着CoCl_2·6H_2O添加量的增加以及反应时间的延长而增加。复合微球粉末经过热压得到的复合材料具有三维网络结构,Co~(2+)的加入使得PDA与PS具有更好的相容性。PDA·Co/PS复合材料的热性能和力学性能比PDA/PS有更多的提升。
To achieve high-efficiency polymerization of dopamine, Co~(2+)was introduced into the dopamine reaction system, the catalytic action of Co~(2+)achieved rapid polymerization of dopamine. The polydopamine(PDA) was adhered to the polystyrene(PS) microspheres. When the added molar ratio of CoCl_2·6 H_2O to dopamine was 40%, the reaction time of modified microspheres with the same PDA content could be shortened from 16 h to 1 h, compared with the reaction without metal ions. The content of PDA and Co in modified microspheres increased with increasing of the amount of CoCl_2·6 H_2O addition and reaction time.The composites with 3D network structure were prepared by hot pressing the powder of modified microspheres, and the introduction of Co~(2+)resulted in better compatibility between PDA and PS. In addition,the thermal and mechanical properties of PDA·Co/PS composites were more improved than that of PDA/PS.
关键词(KeyWords):
聚多巴胺;金属掺杂;三维网络结构;聚苯乙烯
polydopamine;metal doping;3D network structure;polystyrene
基金项目(Foundation):
作者(Author):
李思汗,王彦,诸静,于俊荣,胡祖明
LI Si-han,WANG Yan,ZHU Jing,YU Jun-rong,HU Zu-ming
DOI: 10.16090/j.cnki.hcxw.20190514.012
参考文献(References):
- [1]LEE H,DELLATORE S M,MILLER W M,et al.Mussel-inspired surface chemistry for multifunctional coatings[J].Science,2007,318(5849):426-430.
- [2]PONZIO F,BARTHèS J,BOUR J,et al.Oxidant control of polydopamine surface chemistry in acids:a mechanism-based entry to superhydrophilic-superoleophobic coatings[J].Chemistry of Materials,2016,28(13):4697-4705.
- [3]DU X,LI L,BEHBOODI-Sadabad F,et al.Bio-inspired strategy for controlled dopamine polymerization in basic solutions[J].Polymer Chemistry,2017,8(14):2145-2151.
- [4]HUANG L,ARENA J T,MANICKAM S S,et al.Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification[J].Journal of Membrane Science,2014,460(9):241-249.
- [5]JIANG J H,ZHU L P,LI X L,et al.Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin[J].Journal of Membrane Science,2010,364(1):194-202.
- [6]WAN X,ZHAN Y,LONG Z,et al.High-performance magnetic poly(arylene ether nitrile)nanocomposites:co-modification of Fe3O4via mussel inspired poly(dopamine)and amino functionalized silane KH550[J].Applied Surface Science,2017,425:905-914.
- [7]LIU Y,AI K,LU L.Polydopamine and its derivative materials:Synthesis and promising applications in energy,environmental,and biomedical fields[J].Chemical Reviews,2014,114(9):5057-5115.
- [8]KANG S M,HWANG N S,YEOM J,et al.One-step multipurpose surface functionalization by adhesive catecholamine[J].Advanced Functional Materials,2012,22(14):2949-2955.
- [9]LUO J,ZHAO F,FEI X,et al.Mussel inspired preparation of polymer grafted graphene as a bridge between covalent and noncovalent methods[J].Chemical Engineering Journal,2016,293:171-181.
- [10]YANG H C,LUO J,LüY,et al.Surface engineering of polymer membranes via mussel-inspired chemistry[J].Journal of Membrane Science,2015,483:42-59.
- [11]JOSEP S,JAVIER S P,FELIX B,et al.Catechol-based biomimetic functional materials[J].Advanced Materials,2013,25(5):653-701.
- [12]FEI B,QIAN B,YANG Z,et al.Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine[J].Carbon,2008,46(13):1795-1797.
- [13]PHUA S L,YANG L,TOH C L,et al.Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay[J].Acs Appl Mater Interfaces,2013,5(4):1302-1309.
- [14]SHEN H,GUO J,WANG H,et al.Bioinspired modification of h-BNfor high thermal conductive composite films with aligned structure[J].ACS Appl Mater Interfaces,2015,7(10):5701-5708.
- [15]WU J,TU W,ZHANG Y,et al.Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries[J].Powder Technology,2017,311:200-205.
- [16]CHO J H,VASAGAR V,SHANMUGANATHAN K,et al.Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams[J].Chemistry of Materials,2016,27(19):6784-6790.
- [17]WANG W,LI R,TIAN M,et al.Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine)functionalization[J].Acs Appl Mater Interfaces,2013,5(6):2062-2069.
- [18]LIU H,ZHU L L,HE Y,et al.A novel method for fabricating elastic conductive polyurethane filaments by in-situ reduction of polydopamine and electroless silver plating[J].Materials&Design,2017,113:254-263.
- [19]YANG L,KONG J,ZHOU D,et al.Transition-metal-ion-mediated polymerization of dopamine:mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids[J].Chemistry,2014,20(25):7776-7783.
- [20]GAO Z,DUAN L,YANG Y,et al.Mussel-inspired tough hydrogels with self-repairing and tissue adhesion[J].Applied Surface Science,2018,427:74-82.
- [21]DU X,LI L,LI J,et al.UV-triggered dopamine polymerization:control of polymerization,surface coating,and photopatterning[J].Advanced Materials,2014,26(47):8029-8033.
- [22]ZHANG C,OU Y,LEI W X,et al.CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J].Angewandte Chemie,2016,128(9):3106-3109.
- [23]MACKAY M E,TUTEJA A,DUXBURY P M,et al.General strategies for nanoparticle dispersion[J].Science,2006,311(5768):1740-1743.
- [24]WAN C,FRYDRYCH M,CHEN B.Strong and bioactive gelatin-graphene oxide nanocomposites[J].Soft Matter,2011,7(13):6159-6166.
- [25]XIONG S,WANG Y,YU J,et al.Polydopamine particles for nextgeneration multifunctional biocomposites[J].Journal of Materials Chemistry A,2014,2(20):7578-7587.
- [26]SHANMUGANATHAN K,CHO J H,IYER P,et al.Thermooxidative stabilization of polymers using natural and synthetic melanins[J].Macromolecules,2011,44(24):9499-9507.
- [27]CHOZHAN C K,ALAGAR M,GNANASUNDARAM P.Synthesis and characterization of 1,1-bis(3-methyl-4-hydroxy phenyl)cyclohexane polybenzoxazine-organoclay hybrid nanocomposites[J].Acta Materialia,2009,57(3):782-794.
- [28]LIU B,JIN L,ZHENG H,et al.Ultrafine Co-based nanoparticles@mesoporous carbon nanospheres toward high-performance supercapacitors[J].Acs Applied Materials&Interfaces,2016,9(2):1746-1758.P
- [29]ZHU K,CHEN C,XU M,et al.In situ carbothermal reduction synthesis of Fe nanocrystals embedded into N-doped carbon nanospheres for highly efficient U(VI)adsorption and reduction[J].Chemical Engineering Journal,2018,331:395-405.
- [30]YANG F K,ZHANG W,HAN Y,et al."Contact"of nanoscale stiff films[J].Langmuir,2012,28(25):9562-9572.