PEW-g-MAH/硅烷交联剂复合改性UHMWPE纤维及性能评价Performance Evaluation of UHMWPE Fiber Compound Modified by PEW-g-MAH/Silane Crosslinking Agents
田永龙,郭腊梅
TIAN Yong-long,GUO La-mei
摘要(Abstract):
使用马来酸酐接枝聚乙烯蜡(PEW-g-MAH)与硅烷交联剂对超高分子质量聚乙烯(UHMWPE)纤维进行复合改性处理,以提高纤维与树脂基体的界面黏接强度。研究复合改性处理对纤维的界面黏接强度、物理化学性能、失重率以及浸润性的影响趋势。研究发现:随着硅烷交联剂用量的增加,纤维拔出强度随之逐渐增加,而失重率与接触角随之逐渐减小。红外分析表明,改性体系中引入的硅烷交联剂相互反应产生了三维网状交联结构,并且在纤维的表面引入了新的功能基团。拉伸测试和结晶度分析结果表明,改性处理前后,纤维的结晶度和力学性能没有发生显著的变化。
PEW-g-MAH was used in combination with silane crosslinking agent to modify the UHMWPE fibers to improve the interface bonding strength between fiber and resin matrix.The influence of compound modification treatment on the interfacial bonding strength,physical and chemical properties,weight loss rate and wettability of the fiber were studied.The results showed that with the increase of the concentration of silane crosslinking agent,the pull out strength of fiber increased gradually,while the weight loss rate and contact angle decreased gradually.Infrared analysis showed that the silane crosslinking agent introduced into the modified system had reacted with each other to produce a three-dimensional network crosslinking structure,and new functional groups also had been introduced onto the surface of fiber.The results of tensile test and crystallinity analysis showed that the mechanical properties and crystallinity of fiber did not change significantly before and after modification.
关键词(KeyWords):
超高分子质量聚乙烯纤维;复合改性;PEW-g-MAH;硅烷交联剂;表面性能
UHMWPE fiber;compound modification;PEW-g-MAH;silane crosslinking agent;surface property
基金项目(Foundation): 中央高校基本科研业务费专项资金资助(102552016011)
作者(Author):
田永龙,郭腊梅
TIAN Yong-long,GUO La-mei
DOI: 10.16090/j.cnki.hcxw.2020.08.014
参考文献(References):
- [1] CHEN M J, JIANG B B, WANG J D, et al. Investigation of the extraction process in gel-spinning technology for ultrahigh-molecular-weight polyethylene fibers by low-field nuclear magnetic resonance[J]. Journal of Applied Polymer Science, 2015, 132(23):1-10. doi:10.1002/app. 42018.
- [2] YEH J T, WANG C K, ZHOU Q, et al. Ultrahigh molecular weight polyethylene fibers prepared using conical dies with varying dimensions[J]. Polymer Engineering and Science, 2013, 53(9):1910-1919.
- [3] XIA L, XI P, CHENG B W. A comparative study of UHMWPE fibers prepared by flash-spinning and gel-spinning[J]. Materials Letters, 2015,147:79-81.
- [4]郑震,施梅梧,周国泰.超高分子量聚乙烯纤维增强复合材料及其防弹性能的研究进展[J].合成纤维, 2002, 31(4):20-23, 26.
- [5]郑震,施梅梧,周国泰.超高分子量聚乙烯纤维表面处理的研究进展[J].合成纤维, 2002, 31(5):9-12.
- [6]周信.室温自交联聚乙烯及其玻纤增强复合材料的研究[D].苏州:苏州大学, 2010.
- [7]郎彦庆,王耀先,程树军.超高分子量聚乙烯纤维的硅烷交联改性[J].合成纤维, 2004, 33(4):1-3, 3.
- [8]田永龙,郭腊梅. PEW-g-MAH/St的制备及其在UHMWPE纤维表面改性上的应用[J].合成纤维, 2020, 49(6):36-40.
- [9] LI B, DONG S, WU X, et al. Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites[J]. Composites Science and Technology, 2017, 147:52-61.
- [10] WANG L Y, LIANG Y H, YIN Y C, et al. Enhancing the green mechanical strength of colloidal silica-bonded alumina castables using a silane coupling agent[J]. Ceramics International, 2016, 42(9):11496-11499.
- [11] LIU F G, MIAO L Q, WANG Y, et al. Green fabrication of ultraviolet curable epoxy acrylate-silica hybrid coatings[J]. Progress in Organic Coatings, 2017, 109:38-44.
- [12] GAO Q H, WANG M L, CHEN J, et al. Fabrication of new conductive surface-metallized UHMWPE fabric with improved thermal resistance[J].RSC Advances, 2020, 10(26):15139-15147.