Ⅳ型高压储氢气瓶用碳纤维复合材料界面表征与分析Characterization and Analysis of Interface of Carbon Composite Material for Type Ⅳ High-Pressure Hydrogen Storage Vessel
戚亮亮,程乐乐,余木火,孙泽玉
QI Liang-liang,CHENG Le-le,YU Mu-huo,SUN Ze-yu
摘要(Abstract):
Ⅳ型高压储氢气瓶的结构载荷主要由外层碳纤维复合材料(CFRP)承载。良好的碳纤维(CF)与环氧树脂(EP)界面性能有助于载荷传递,使CF强度发挥至最大化,提高压力容器的安全性能,另外可以减少CFRP用量,降低成本,从而打破高昂价格带来的应用局限。通过扫描电镜、原子力显微镜、X射线电子能谱仪、动态接触角、微脱黏测试仪及万能试验机对CFRP界面进行了系统的表征与分析。通过分析CF的表面形态、化学成分、润湿性、表面能及界面结合力,揭示了CFRP力学性能与界面性能的相关性。研究表明,CF表面利于形成机械互锁的表面粗糙度、利于化学键结合的含氧活性官能团、利于润湿的极性组分表面能等因素可以增强其与EP的界面结合,最大程度发挥CF的力学性能,使高压容器承载复合材料具有稳定的力学性能。
The structural load of type Ⅳ high-pressure hydrogen storage vessels is mainly carried by the outer carbon fiber reinforced plastic(CFRP). Better interfacial properties between carbon fiber(CF) and epoxy resin(EP) can help load transfer, maximize the strength of CF, and improve the safety performance of pressure vessels. In addition, the amount of CFRP can be reduced to reduce costs, thereby breaking the application limitations brought about by high prices. The interface of CFRP was systematically characterized and analyzed by scanning electron microscope, atomic force microscope, X-ray electron spectrometer, dynamic contact angle, micro-debonding tester and universal testing machine. The correlation between CFRP mechanical properties and interfacial properties was revealed by analyzing the surface morphology, chemical composition, wettability, surface energy and interfacial binding force of CF. Researches show that factors such as the surface roughness of the CF surface that are conducive to the formation of mechanical interlocking, the oxygen-containing active functional groups that are conducive to chemical bonding, and the surface energy of polar components that are conducive to wetting can enhance its interfacial bonding with EP, maximize the mechanical properties of CF, and make the composite material for high-pressure vessels have stable mechanical properties.
关键词(KeyWords):
Ⅳ型高压储氢气瓶;CF;CFRP;界面剪切强度;NOL环
type Ⅳ high-pressure hydrogen storage vessel;CF;CFRP;interfacial shear strength;NOL ring
基金项目(Foundation): 纤维材料改性国家重点实验室开放课题(KF2203),氢能专项
作者(Author):
戚亮亮,程乐乐,余木火,孙泽玉
QI Liang-liang,CHENG Le-le,YU Mu-huo,SUN Ze-yu
DOI: 10.16090/j.cnki.hcxw.2023.04.008
参考文献(References):
- [1]何静,刘宏波,魏列,等.车载储氢瓶泄漏及车库内通风方式研究[J].中国安全生产科学技术, 2022, 18(9):181-188.
- [2] MA Y L, LIU Z Y, LI M Z, et al. Preparation and properties of a magnetorheological material used for pipeline and pressure vessel damage repair[J]. Composite Structures, 2021, 276:114566.
- [3] HU Z Y, CHEN M H, PAN B. Simulation and burst validation of 70MPa type IV hydrogen storage vessel with dome reinforcement[J]. International Journal of Hydrogen Energy, 2021, 46(46):23779-23794.
- [4]柯华,查志伟,郑虓.Ⅳ型储氢瓶用复合材料及制备工艺[J].纤维复合材料, 2022, 39(1):15-21.
- [5]姜广祥,费春东,蒋喜志.不等极孔纤维缠绕球形压力容器的结构设计与性能[J].纤维复合材料, 2002(2):23-26.
- [6] ZHANG M, LV H, KANG H R, et al. A literature review of failure prediction and analysis methods for composite high-pressure hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2019, 44(47):25777-25799.
- [7]郑传祥,李蓉,王亮,等.碳纤维缠绕铝内衬储氢容器力学分析及优化控制[J].化工机械, 2013, 40(1):51-55, 134.
- [8]张明,吕洪,康怀镕,等.Ⅳ复合高压储氢瓶参数化有限元分析[J].同济大学学报(自然科学版), 2019, 47(S1):154-158, 182.
- [9] YUAN X, ZHU B, CAI X, et al. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing[J]. Applied Surface Science, 2017, 401:414-423.
- [10]秦玉琪,袁奕雯,杨振国.纤维缠绕储氢气瓶及燃料汽车应用现状综述[J].中国特种设备安全, 2019, 35(2):70-75.
- [11] KAUSCHCM,KIMY,RUSSELLVM,etal.Surfacetensionandadsorption properties of a series of bolaamphiphilic poly(fluorooxetane)s[J]. Langmuir:The ACS Journal of Surfaces and Colloids, 2003, 19(18):7182-7187.