金属有机框架衍生纳米孔碳材料的研究进展Study Progress of Nanoporous Carbon Materials Derived from Metal Organic Frameworks
李瑞,谢光银,王贤,敬涛
LI Rui,XIE Guang-yin,WANG Xian,JING Tao
摘要(Abstract):
金属有机框架(MOFs)衍生的纳米孔碳材料,因具有孔隙率可控、热化学稳定性好、电导率高、催化活性好、易与其他元素和材料修饰等优点而受到人们的广泛关注,因此被广泛应用于环境、储能系统(如电池、超级电容器)、催化剂等。从前驱体控制、杂原子掺杂、形状/取向控制、与其他功能材料杂化等方面介绍和总结了新型MOFs衍生碳材料的研究进展。
Metal organic frameworks(MOFs)-derived nanoporous carbon materials have attracted much attention because of their controllable porosity, good thermochemical stability, high electrical conductivity,good catalytic activity, and easy modification with other elements and materials. Therefore, MOFs-derived carbon materials are widely used in the environment, energy storage systems(e.g, batteries, supercapacitors), catalysts, etc. The research progress of new MOFs-derived carbon materials in terms of precursor control, heteroatom doping, shape/orientation control, and hybridization with other functional materials are introducd and summarizd.
关键词(KeyWords):
纳米多孔碳;有机框架;功能性碳;化学合成
nanoporous carbon;organic framework;functional carbon;chemical synthesis
基金项目(Foundation): 西安工程大学研究生年度创新基金项目(chx20210027)
作者(Author):
李瑞,谢光银,王贤,敬涛
LI Rui,XIE Guang-yin,WANG Xian,JING Tao
DOI: 10.16090/j.cnki.hcxw.2021.11.006
参考文献(References):
- [1] DANG S, ZHU Q-L, XU Q. Nanomaterials derived from metal-organic frameworks[J]. Nature Reviews Materials, 2017, 3(1):1-14.
- [2] YOUNG C, PARK T, YI J W, et al. Advanced functional carbons and their hybrid nanoarchitectures towards supercapacitor applications[J].Chem Sus Chem, 2018, 11(20):3546-3558.
- [3] ZHU Q L, XIA W, AKITA T, et al. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction[J]. Advanced Materials,2016, 28(30):6391-6398.
- [4] YOUNG C, LIN J, WANG J, et al. Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors[J]. Chemistry-A European Journal, 2018, 24(23):6127-6132.
- [5] ZOU L, HOU C C, LIU Z, et al. Superlong single-crystal metal-organic framework nanotubes[J]. Journal of the American Chemical Society,2018, 140(45):15393-15401.
- [6] KHAN J H, MARPAUNG F, YOUNG C, et al. Jute-derived microporous/mesoporous carbon with ultra-high surface area using a chemical activation process[J]. Microporous and Mesoporous Materials, 2019, 274:251-256.
- [7] HAQUE E, YAMAUCHI Y, MALGRAS V, et al. Nanoarchitectured graphene-organic frameworks(gofs):synthetic strategies, properties, and applications[J]. Chemistry-An Asian Journal, 2018, 13(23):3561-3574.
- [8] WANG J, LUO X, YOUNG C, et al. A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollow carbonaceous materials[J]. Chemistry of Materials, 2018, 30(13):4401-4408.
- [9] TAN H, TANG J, KIM J, et al. Rational design and construction of nanoporous iron-and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7(4):1380-1393.
- [10] CHAIKITTISILP W, HU M, WANG H, et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012, 48(58):7259-7261.
- [11] WANG C, KANETI Y V, BANDO Y, et al. Metal-organic frameworkderived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion[J]. Materials Horizons, 2018, 5(3):394-407.
- [12] SALUNKHE R R, KANETI Y V, KIM J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research, 2016, 49(12):2796-2806.
- [13] YOUNG C, KIM J, KANETI Y V, et al. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications[J]. ACS Applied Energy Materials, 2018, 1(5):2007-2015.
- [14] SALUNKHE R R, WANG J, ALOWASHEEIR A, et al. Three-dimensional macroporous graphitic carbon for supercapacitor application[J].Chemistry Select, 2018, 3(16):4522-4526.
- [15] CAI Z X, WANG Z L, KIM J, et al. Hollow functional materials derived from metal-organic frameworks:synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials,2019, 31(11):1804903.
- [16] O’KEEFFE M, YAGHI O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets[J]. Chemical Reviews, 2012, 112(2):675-702.
- [17] HORIKE S, SHIMOMURA S, KITAGAWA S. Soft porous crystals[J].Nature Chemistry, 2009, 1(9):695-704.
- [18] PERRY IV J J, PERMAN J A, ZAWOROTKO M J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks[J]. Chemical Society Reviews, 2009, 38(5):1400-1417.
- [19] YOUNG C, WANG J, KIM J, et al. Controlled chemical vapor deposition for synthesis of nanowire arrays of metal-organic frameworks and their thermal conversion to carbon/metal oxide hybrid materials[J]. Chemistry of Materials, 2018, 30(10):3379-3386.
- [20] LI X, YUAN H, QUAN X, et al. Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks[J]. Journal of Environmental Sciences, 2018,63:250-259.
- [21] TORAD N L, HU M, KAMACHI Y, et al. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals[J]. Chemical Communications, 2013, 49(25):2521-2523.
- [22] LIN K-Y A, CHEN B C. Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67[J]. Dalton Transactions, 2016, 45(8):3541-3551.
- [23] WEI C, LIU W, CHEN Q, et al. Nitrogen-doped ZnO/Carbon hollow rhombic dodecahedral for photoelectrochemical sensing glutathione[J].Applied Surface Science, 2018, 458:872-879.
- [24] CABELLO C P, PICóM F F, MAYA F, et al. UiO-66 derived etched carbon/polymer membranes:High-performance supports for the extraction of organic pollutants from water[J]. Chemical Engineering Journal,2018, 346:85-93.
- [25] MAIGA O I, LI R, YE K, et al. Sulfide heave:Key factor governing cathode deterioration in pouch LiS cells[J]. Electrochimica Acta, 2019,300:150-155.
- [26] WANG Y, TONG Y, XU X, et al. Metal-organic framework-derived three-dimensional porous graphitic octahedron carbon cages-encapsulated copper nanoparticles hybrids as highly efficient enrichment material for simultaneous determination of four fluoroquinolones[J]. Journal of Chromatography A, 2018, 1533:1-9.
- [27] CHANG T H, YOUNG C, LEE M H, et al. Synthesis of MOFs-525Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application[J]. Chemistry–An Asian Journal, 2017, 12(21):2857-2862.
- [28] LIM S, SUH K, KIM Y, et al. Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks[J]. Chemical Communications, 2012, 48(60):7447-7449.
- [29] XIA W, QIU B, XIA D, et al. Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage[J]. Scientific Reports, 2013, 3(1):1-7.
- [30] PIEPENBROCK M-O M, LLOYD G O, CLARKE N, et al. Metal-and anion-binding supramolecular gels[J]. Chemical Reviews, 2010, 110(4):1960-2004.
- [31] LLOYD G O, STEED J W. Anion-tuning of supramolecular gel properties[J]. Nature Chemistry, 2009, 1(6):437-442.
- [32] ZHAO S, YIN H, DU L, et al. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction[J]. ACS Nano, 2014, 8(12):12660-12668.
- [33] PENG H J, HAO G X, CHU Z H, et al. From metal-organic framework to porous carbon polyhedron:toward highly reversible lithium storage[J]. Inorganic Chemistry, 2017, 56(16):10007-10012.
- [34] ZHANG W, JIANG X, ZHAO Y, et al. Hollow carbon nanobubbles:monocrystalline MOF nanobubbles and their pyrolysis[J]. Chemical Science, 2017, 8(5):3538-3546.
- [35] LI X, XU G, PENG J, et al. Highly porous metal-free graphitic carbon derived from metal-organic framework for profiling of N-linked glycans[J]. ACS Applied Materials&Interfaces, 2018, 10(14):11896-11906.
- [36] PACHFULE P, SHINDE D, MAJUMDER M, et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework[J]. Nature Chemistry, 2016, 8(7):718-724.
- [37] WANG T, KIM H-K, LIU Y, et al. Bottom-up formation of carbonbased structures with multilevel hierarchy from MOF-guest polyhedra[J].Journal of the American Chemical Society, 2018, 140(19):6130-6136.
- [38] MA T Y, DAI S, JARONIEC M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Journal of the American Chemical Society, 2014,136(39):13925-13931.
- [39] MENG J, LIU X, LI J, et al. General oriented synthesis of precise carbon-confined nanostructures by low-pressure vapor superassembly and controlled pyrolysis[J]. Nano Letters, 2017, 17(12):7773-7781.
- [40] CHEN B, YANG Z, MA G, et al. Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities[J]. Microporous and Mesoporous Materials, 2018,257:1-8.
- [41] LI H, FU D, ZHANG X-M. A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solidstate supercapacitor[J]. Royal Society Open Science, 2018, 5(1):171028.
- [42] ZHENG F, YANG Y, CHEN Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature Communications, 2014, 5(1):1-10.
- [43] WANG R, SUN X, OULD-CHIKH S, et al. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction[J]. ACS Applied Materials&Interfaces, 2018, 10(17):14751-14758.
- [44] WU M, LI C, ZHAO J, et al. Tannic acid-mediated synthesis of dual-heteroatom-doped hollow carbon from a metal-organic framework for efficient oxygen reduction reaction[J]. Dalton Transactions, 2018, 47(23):7812-7818.
- [45] MA W, WANG N, TONG T, et al. Nitrogen, phosphorus, and sulfur tri-doped hollow carbon shells derived from ZIF-67@poly(cyclotriphosphazene-co-4, 4′-sulfonyldiphenol)as a robust catalyst of peroxymonosulfate activation for degradation of bisphenol A[J]. Carbon, 2018, 137:291-303.
- [46] TORAD N L, HU M, ISHIHARA S, et al. Direct synthesis of MOFsderived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment[J]. Small, 2014, 10(10):2096-2107.
- [47] CHENG S, SHANG N, FENG C, et al. Efficient multicomponent synthesis of propargylamines catalyzed by copper nanoparticles supported on metal-organic framework derived nanoporous carbon[J]. Catalysis Communications, 2017, 89:91-95.
- [48] GUO Y, ZENG X, ZHANG Y, et al. Sn nanoparticles encapsulated in3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries[J]. ACS Applied Materials&Interfaces,2017, 9(20):17172-17177.
- [49] JIAO C, WANG Y, LI M, et al. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution[J]. Journal of Magnetism and Magnetic Materials,2016, 407:24-30.
- [50] HALDORAI Y, CHOE S R, HUH Y S, et al. Metal-organic framework derived nanoporous carbon/Co3O4 composite electrode as a sensing platform for the determination of glucose and high-performance supercapacitor[J]. Carbon, 2018, 127:366-373.
- [51] CHEN B, MA G, ZHU Y, et al. Metal-organic-framework-derived bi-metallic sulfide on N, S-codoped porous carbon nanocomposites as multifunctional electrocatalysts[J]. Journal of Power Sources, 2016, 334:112-119.
- [52] MENG J, NIU C, XU L, et al. General oriented formation of carbon nanotubes from metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(24):8212-8221.
- [53] LEE S-H, CHOI S. Bimetallic zeolitic imidazolate frameworks for symmetric electrical double-layer supercapacitors with aqueous electrolytes[J]. Materials Letters, 2017, 207:129-132.
- [54] KIM J, YOUNG C, LEE J, et al. CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors[J]. Chemical Communications, 2016, 52(88):13016-13019.
- [55] HUANG G, LOU P, XU G-H, et al. Co3O4 nanosheet decorated nickel foams as advanced lithium host skeletons for dendrite-free lithium metal anode[J]. Journal of Alloys and Compounds, 2020, 817:152753.
- [56] HUANG G, ZHANG F, DU X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2):1592-1599.
- [57] TAN B, WU Z-F, XIE Z-L. Fine decoration of carbon nanotubes with metal organic frameworks for enhanced performance in supercapacitance and oxygen reduction reaction[J]. Science Bulletin, 2017, 62(16):1132-1141.
- [58] GE L, LIN R, ZHU Z, et al. A nitrogen-doped electrocatalyst from metal-organic framework-carbon nanotube composite[J]. Journal of Materials Research, 2018, 33(5):538-545.
- [59] BAO W, ZHANG Z, ZHOU C, et al. Multi-walled carbon nanotubes@mesoporous carbon hybrid nanocomposites from carbonized multiwalled carbon nanotubes@metal-organic framework for lithium sulfur battery[J]. Journal of Power Sources, 2014, 248:570-576.