水热处理对涤纶结构与性能的影响Effect of Hydrothermal Treatment on the Structure and Properties of Polyester Fiber
王豆,张辉,刘瑾姝
WANG Dou,ZHANG Hui,LIU Jin-shu
摘要(Abstract):
以纯水为反应介质,在高温、高压条件下对涤纶进行水热处理,探讨了反应温度和反应时间对涤纶拉伸、表面摩擦、热收缩、直径和密度的影响规律,使用声速取向测量仪、扫描电镜、热重分析仪和红外光谱仪对涤纶的取向度、表面形貌、热学性能和分子结构进行了表征。结果表明:涤纶经过水热处理之后,断裂强度有所减小,断裂伸长率有所增大;反应温度越高、时间越长,对断裂强度和断裂伸长率的影响越显著;涤纶静、动摩擦因数先减小后增大;随着反应时间的延长,纤维收缩率逐渐增大;纤维直径和密度有不同程度的增大;水热处理使得涤纶发生部分水解,取向度有所减小,表面形貌和热稳定性能没有明显变化。
The polyester fiber was treated with pure water under high temperature and high pressure conditions. The effects of reaction temperature and reaction time on the tensile, surface friction, thermal shrinkage, diameter and density of polyester fiber were investigated. The orientation, morphology, thermal properties and molecular structure of polyester fiber were also characterized by means of sound velocity orientation measuring instrument, scanning electron microscopy, thermogravimetric analyzer and infrared spectrometer. The results show that the tensile strength of the polyester fiber decreases, while the elongation at break increases with the increase of reaction temperature or reaction time. The higher the reaction temperature or the longer the reaction time, the more seirous the tensile strength and elongation at break of the polyester fiber are subjected to. The static and dynamic friction coefficients of the fiber decrease first and then increase. The fiber shrinkage increases with increase of reaction time. The fiber diameter and density increase to some degrees. When the polyester fiber is partially hydrolyzed after hydrothermal treatment, the degree of orientation decreases, but the surface morphology and thermal stability have no significant change.
关键词(KeyWords):
涤纶;水热处理;结构;性能
polyester fiber;hydrothermal treatment;structure;property
基金项目(Foundation): 中国纺织工业联合会科技指导性项目(2017040);; 陕西省“三秦学者”(2017)基金支持
作者(Author):
王豆,张辉,刘瑾姝
WANG Dou,ZHANG Hui,LIU Jin-shu
DOI: 10.16090/j.cnki.hcxw.20181214.009
参考文献(References):
- [1]凌良仲,刘松,倪智婷.改性涤纶开发技术及应用[J].棉纺织技术,2014, 42(4):74-77.
- [2]余旺苗,陈旭炜.纳米材料及其在纺织工业中的应用[J].东华大学学报(自然科学版), 2001, 27(6):123-127.
- [3]李芳,许晶,吴荣辉,等.涤纶纤维纳米二氧化钛的制备及光催化活性[J].西安工程大学学报, 2013, 27(3):301-306.
- [4] HARIFI T, MONTAZER M. Free carrier dyeing of polyester fabric using nano TiO2[J]. Dyes&Pigments, 2013, 97(3):440-445.
- [5] KHAN M Z, ASHRAF M, HUSSAIN T, et al. In situ deposition of TiO2nanoparticles on polyester fabric and study of its functional properties[J].Fibers&Polymers, 2015, 16(5):1092-1097.
- [6] BOZZI A, YURANOVA T, KIWI J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. Journal of Photochemistry&Photobiology A Chemistry, 2005, 172(1):27-34.
- [7]梁慧,张光先,张凤秀,等.紫外线-纳米二氧化钛改性高亲水涤纶织物的制备[J].纺织学报, 2013, 34(3):82-86.
- [8]柯贵珍,徐双林.纳米二氧化钛用于涤纶纤维的抗静电整理[C].雪莲杯功能性纺织品及纳米技术应用研讨会. 2010.
- [9]杨璐,张辉.涤纶织物四氯化钛水热法表面改性[J].青岛大学学报(工程技术版), 2011, 26(1):47-52.
- [10]杨亚玲,张杨杨,刘金鑫,等.涤纶织物负载二氧化钛的方法及影响因素[J].印染助剂, 2017, 34(9):18-22.
- [11] NICA I, STAN M, DINISCHIOTU A, et al. Innovative self-cleaning and biocompatible polyester textiles nano-decorated with Fe-N-doped titanium dioxide[J]. Nanomaterials, 2016, 6(11):1-16.
- [12] BOTTCHER H, MAHLTIG B, SARSOUR J, et al. Qualitative investigations of the photocatalytic dye destruction by TiO2-coated polyester fabrics[J]. Journal of Sol-Gel Science and Technology, 2010, 55(2):177-185.
- [13] YURANOVA T, LAUB D, KIWI J. Synthesis, activity and characterization of textiles showing self-cleaning activity under daylight irradiation[J]. Catalysis Today, 2007, 122(1):109-117.
- [14]肖逸帆,柳松.纳米二氧化钛的水热法制备及光催化研究进展[J].硅酸盐通报, 2007, 26(3):523-528.
- [15]任成军,钟本和,周大利,等.水热法制备高活性TiO2光催化剂的研究进展[J].稀有金属, 2004, 28(5):903-906.
- [16] KIM T K, LEE M N, LEE S H, et al. Development of surface coating technology of TiO2, powder and improvement of photocatalytic activity by surface modification[J]. Thin Solid Films, 2005, 475(1-2):171-177.
- [17] WU Z, WANG H, LIU Y, et al. Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method[J]. Journal of Hazardous Materials, 2008, 151(1):17-25.
- [18] KONTOS A I, ARABATZIS I M, TSOUKLERIS D S, et al. Efficient photocatalysts by hydrothermal treatment of TiO2[J]. Catalysis Today,2005, 101(3):275-281.
- [19] BYRAPPA K, ADSCHIRI T. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth&Characterization of Materials,2007, 53(2):117-166.
- [20]陈稀,黄象安.化学纤维实验教程[M].纺织工业出版社, 1988.
- [21]穆淑华,邱爱娥.涤纶POY拉伸条件对纤维结构性能的影响[J].合成纤维工业, 1989(6):1-9.
- [22]李鑫,李瑞霞,吴大诚,等.涤纶工业丝等温收缩中的结构变化[J].高分子学报, 2001, 1(1):84-89.
- [23]韩枫.涤纶长丝的结构与性能研究[D].苏州:苏州大学, 2006.
- [24]穆祥祺,胡恒亮,贾景农,等.热处理涤纶长丝的结构与力学性能[J].纺织学报, 1984, 5(11):15-18.
- [25]黄锦星,袁光龙,范勋培,等.涤纶纤维取向测定和非晶区取向对纤维性能的影响[J].纺织学报, 1984, 5(7):13-18.
- [26] MASUDA T, MIWA Y, TAMAGAWA A, et al. Degradation of waste poly(ethylene terephthalate)in a steam atmosphere to recover terephthalic acid and to minimize carbonaceous residue[J]. Polymer Degradation&Stability, 1997, 58(3):315-320.
- [27] MILLER R G J, WILLIS H A. An independent measurement of the amorphous content of polymers[J]. Journal of Polymer Science, 1956, 19(93):485-494.
- [28]沈德言.红外光谱法在高分子研究中的应用[M].科学出版社,1982.