聚酰胺6/黏土/聚乙二醇共混调温纤维的制备与性能Preparation and Properties of Polyamide 6/Clay/Polyethylene Glycol Composite Temperature Regulating Fiber
陈立军,张杨凯,夏维,陈鹏飞,相恒学,朱美芳
CHEN Li-jun,ZHANG Yang-kai,XIA Wei,CHEN Peng-fei,XIANG Heng-xue,ZHU Mei-fang
摘要(Abstract):
通过熔融纺丝法制备了系列聚酰胺6/黏土/聚乙二醇(PTFs)共混调温纤维,并采用傅里叶红外光谱仪、差示扫描量热仪、热红外成像仪、热失重分析仪和复丝强力仪测试了纤维的结构、热性能、调温性能和力学性能。研究显示,PTFs调温纤维的结晶温度为33℃,结晶焓值达到8.46 J/g,且在100次升降温热循环后调温纤维仍保持良好的热性能。通过模拟冷热环境交替下纤维的温度—时间响应行为发现,在热环境(90℃)和冷环境(10℃)下,调温纤维体现出明显的温度滞后响应,与纯PA6纤维相比温差达到3℃。黏土/聚乙二醇在纤维中的最大质量分数为15%,在牵伸4倍时,纤维的拉伸断裂强度达到3.15 cN/dtex。
In this work, a series of polyamide 6/clay/polyethylene glycol(PTFs) composite fibers were prepared by melt spinning. The fiber structure, thermal properties, temperature regulating properties and mechanical properties of these fibers were tested by Fourier transform infrared spectroscopy(FTIR),differential scanning calorimetry(DSC), thermal infrared imager, thermogravimetric analyzer(TG) and multifilament strength meter. The results showed that the crystallization temperature of PTFs fiber was 33 ℃,the crystallization enthalpy value reached 8.5 J/g, and PTFs temperature regulating fiber still maintained good thermal performance after 100 cycles of heating and cooling. By simulating the temperature-time response behavior of PTFs fibers in the hot and cold isothermal environment, it was found that the temperature regulating fiber exhibited a significant temperature lag response both in the hot environment(90 ℃) and the cold environment(10 ℃), and the temperature difference reached 3 ℃ compared with the neat PA6 fiber. The maximum addition content of the clay/polyethylene glycol in the composite fiber was 15% by weight, and the tensile breaking strength of the fiber reached 3.15 cN/dtex at 4 times of drawing.
关键词(KeyWords):
聚酰胺6;黏土;聚乙二醇;调温纤维
polyamide 6;clay;polyethylene glycol;temperature regulating fiber
基金项目(Foundation): 中央高校基金项目(2232018D3-03);; 教育部“创新团队发展计划”滚动支持项目(IRT16R13)
作者(Author):
陈立军,张杨凯,夏维,陈鹏飞,相恒学,朱美芳
CHEN Li-jun,ZHANG Yang-kai,XIA Wei,CHEN Peng-fei,XIANG Heng-xue,ZHU Mei-fang
DOI: 10.16090/j.cnki.hcxw.20190809.002
参考文献(References):
- [1]相恒学,王世超,成艳华,等.有机/无机杂化材料与多功能纤维研究进展[J].中国科学:科学技术,2014,44(11):1137-1144.
- [2]王松林,相恒学,徐锦龙,等.通用合成纤维高值化功能化基础问题与发展趋势[J].纺织学报,2018,39(3):167-174.
- [3]XIANG H X,WANG S C,WANG R L,et al.Synthesis and characterization of an environmentally friendly PHBV/PEG copolymer network as a phase change material[J].Science China-Chemistry,2013,56(6):716-723.
- [4]CHEN W,XIANG H,JIANG Y,et al.Shape-stabilized phase change materials with high phase change enthalpy based on synthetic comb-like poly(acrylonitrile-co-ethylene glycol)for thermal management[J].Science China-Chemistry,2017,60(11):1450-1457.
- [5]CHEN W,XIANG H X,JIANG Y M,et al.Synthetic comb-like phase-change material poly(acrylonitrile-co-lauric acid)copolymer for low temperature energy management[J].Materials Science Forum,2018,913:722-728.
- [6]XIA W,XIANG H X,CHEN W P,et al.Cellulose/paraffin composite fibers for thermal energy storage and temperature regulation[J].Materials Science Forum,2017,898:2318-2328.
- [7]夏维,陈立军,赵杰,等.皮芯型复合储能调温聚酰胺6纤维的制备与表征[J].纺织学报,2018,39(4):1-8.
- [8]PAN W,SHENG J,XIANG H,et al.The mechanical property and crystalline structure of novel high-strength polyamide fibers[C]//HAN Yafang.Physics and Techniques of Ceramic and Polymeric Materials,Singapore:Springer,2019:33-46.
- [9]ZHAI G,XIANG H,NI M,et al.Effect of winding speed on the structure and mechanical properties of high-strength polyamide 6 Fibers[C]//HAN Yafang.Physics and Techniques of Ceramic and Polymeric Materials,Singapore:Springer,2019:57-66.
- [10]PRASHANTHA K,SCHMITT H,LACRAMPE M F,et al.Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites[J].Composites Science and Technology,2011,71(16):1859-1866.