新型离子液体交换法合成阻燃剂及其应用The New Ionic-Liquid Exchange Method for Synthesizing Flame-Retardant and Its Application
邓之俊,张丽本,戴红兵,涂必冬,陆威
DENG Zhi-jun,ZHANG Li-ben,DAI Hong-bing,TU Bi-dong,LU Wei
摘要(Abstract):
为了开发出一种合成简单、便于保存,且不会对环境造成污染的阻燃剂,以双咪唑离子液体为单体,通过活性聚合反应和阴离子交换反应合成了磷氮膨胀型阻燃剂聚1-丁基-3-(1-乙烯基咪唑-3-己基)咪唑磷酸氢盐和聚1-丁基-3-(1-乙烯基咪唑-3-己基)咪唑磷酸二氢盐,研究了不同阻燃剂与聚氯乙烯的比例对聚氯乙烯电缆料极限氧指数的影响。结果表明:随着体系中阻燃剂与聚氯乙烯的质量比从1∶5到4∶9,聚氯乙烯电缆料的极限氧指数可从28%提高到34%;并且同等比例下,聚1-丁基-3-(1-乙烯基咪唑-3-己基)咪唑磷酸氢盐对极限氧指数的提高要优于聚1-丁基-3-(1-乙烯基咪唑-3-己基)咪唑磷酸二氢盐。
In order to develop a flame retardant which is easy to synthesize, convenient to preserve and will not pollute the environment, a polyphosphazene-expanded flame-retardant poly1-butyl-3-(1-vinylimidazolium-3-hexyl) imidazolium hydrogen phosphate salt and a poly1-butyl-3-(1-vinylimidazolium-3-hexyl) imidazolium phosphate dihydrogen salt are synthesized by living polymerization reaction and anion exchange reaction with a bis-imidazole ionic liquid as a monomer. The relationship between the oxygen index and the ratio of different flame-retardants and polyvinyl chloride(PVC) is studied. The proportion of flame retardants and PVC as the system from 1∶5 to 4∶9, the limiting oxygen index of PVC cable materials is increased from 28% to 34%, and under the same proportion, poly1-butyl 3-(1-vinyl imidazole-3-hexyl) imidazole hydrogen phosphate salt performance on the improvement of oxygen index is superior to poly1-butyl 3-(1-vinyl imidazole-3-hexyl) imidazole dihydrogen phosphate salt.
关键词(KeyWords):
离子液体;咪唑;阻燃剂;极限氧指数
ionic liquids;imidazole;flame-retardant;limiting oxygen index
基金项目(Foundation):
作者(Author):
邓之俊,张丽本,戴红兵,涂必冬,陆威
DENG Zhi-jun,ZHANG Li-ben,DAI Hong-bing,TU Bi-dong,LU Wei
DOI: 10.16090/j.cnki.hcxw.2019.12.002
参考文献(References):
- [1] COLIN F, POOLE P. Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids[J]. J ounal of Chromatography A, 2004, 1037(1-2):49-82.
- [2]?UC J, JUNGNICEL C,?AC I, et al. Antimicrobi lnd surface activity of 1-alkyl-3-methylimidazolium derivatives[J]. Green Chemistry, 12(4):593-601.
- [3] PALKOWSKI L, BLASZCZYNSKI J, SKRZYPCZAK A, et al. Antimicrobial activity and SAR study of new gemini imidazolium-based chlorides[J]. Chemical Biology&Drug Design, 2014, 83:278-88.
- [4] HUA D, ZHANG J, BAI R, et al. Controlled/living free-radical polymerization in the presence of benzyl9H-carbazole-9-carbodithioateunder60Coγ-Ray Irradiation[J]. Macromoleculelar Chemistry and Physics,2004, 205:1125-1130;
- [5]郑志强.基于咪唑盐(聚)离子液体抗菌材料结构与抗菌性能关系的研究[D].苏州:苏州大学, 2017.
- [6]周银霞.基于离子液体微乳液中的AGET ATRP及聚离子液体的自组装研究[D].苏州:苏州大学, 2012.
- [7] MATYASZEWSKI K. Controlling polymer structures by atom transfer radical polymerization and other controlled/living radical polymerizations[J]. Macromolecular Symposia, 2003, 195(1):25-31.
- [8] DENG Zhijun, GUO Jiangna, QIU Lihua, et al. Basic ionic liquids:a new type of ligand and catalyst for the AGET ATRP of methyl methacrylate[J]. Polymer Chemistry, 2012(3):2346-2443.
- [9]陈敏,邓之俊,张丽本,等.碱性离子液体催化金属调节的甲基丙烯酸甲酯的电子转移活化原子转移自由基聚合[J].应用化学, 2014, 31(5):553-559.