硅烷偶联剂改性超强聚乙烯纤维的性能表征Performance Characterization of Silane Coupling Agent Modified Ultra-Strong Polyethylene Fiber
杨燕宁,孟家光,程燕婷,刘晓巧
YANG Yan-ning,MENG Jia-guang,CHENG Yan-ting,LIU Xiao-qiao
摘要(Abstract):
为充分发挥超强聚乙烯纤维作为复合材料增强体的补强作用,提高纤维与基体之间弱的界面黏结强度,采用硅烷偶联剂KH-550对超强聚乙烯纤维进行了表面改性。全自动单一纤维接触角测量发现改性后超强聚乙烯纤维的接触角减小了30.03%;场发射扫描电镜发现改性后超强聚乙烯纤维的表面由光滑变为粗糙且凹槽深度加深;傅里叶变换红外光谱测试发现改性后的超强聚乙烯纤维出现伯胺基团的弯曲振动和Si-O的特征吸收峰;X射线衍射测试发现改性后超强聚乙烯纤维的衍射峰位置略微发生了变化,且纤维的结晶度增大;热重同步分析发现改性后纤维的残炭率提高了0.56%。
In order to make full use of the reinforcing effect of the ultra-strong polyethylene fiber, improvethe weak interfacial bonding strength between the ultra-strong polyethylene fiber and the composite matrix,the silane coupling agent KH-550 was applied to modify the ultra-strong polyethylene fiber. The full automatic single fiber contact angle measurements show that the contact angle of ultra-strong polyethylene fibermodified by silane coupling KH-550 decreases by 30.03%. Field emission scanning electron microscopy results show that the modified surface of ultra-strong polyethylene fiber changes from smooth to rough andgroove depth. Fourier infrared spectrum test shows that the characteristic absorption peaks of primary aminegroup and Si-O of the modified fiber appeares. X ray diffraction test shows that the diffraction peaks of modified ultra-strong polyethylene fiber change slightly and the crystallinity of the fiber increases. Thermogravimetric analysis shows that the amount of carbon residue after the treatment increases by 0.56%.
关键词(KeyWords):
超强聚乙烯纤维;界面结合强度;硅烷偶联剂KH-550;表面改性
ultra-strong polyethylene fiber;interfacial bonding strength;silane coupling agent KH-550;surface modification
基金项目(Foundation):
作者(Author):
杨燕宁,孟家光,程燕婷,刘晓巧
YANG Yan-ning,MENG Jia-guang,CHENG Yan-ting,LIU Xiao-qiao
DOI: 10.16090/j.cnki.hcxw.2018.04.009
参考文献(References):
- [1]张永冰.有机硅氧烷交联改性超高分子量聚乙烯[D].北京:北京化工大学,2011.
- [2]李春阳.超高分子量聚乙烯纤维表面改性及其橡胶基复合材料性能研究[D].宁波:宁波大学,2015.
- [3]赵志鸿,张廷友,吕召胜,等.超高分子量聚乙烯加工改性研究进展[J].工程塑料应用,2012,40(1):99-102.
- [4]沈贤婷,张炜,夏晋程,等.超高分子量聚乙烯定伸应力测试[J].工程塑料应用,2014(11):81-84.
- [5]于俊荣,陈自力,杨新戈,et al.Thermal properties of crosslinking modified ultrahigh molecular weight polyethylene fibers by ultra-violet irradiation[J].Journal of Donghua University(English Edition),2000(1):74-76.
- [6]STELUTA Teodoru,YUKIHIRO Kusano,NOEMI Rozlosnik.Continuous plasma treatment of ultra-high-molecular-weight polyethylene improvement[J].Plasma Process and Polymers,2009,(6):375-381.
- [7]LIN S P,HAN J L,YEH J T,et al.Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks[J].European Polymer Journal,2007,43(3):996-1008.
- [8]TONG J,MA Y H,JIANG M,Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites[J].Wear,2003,255(16):734-741.
- [9]MAITYA J,JACOBA C,DASA C K,et al.Direct fluorination of UHMWPE fiber and preparation of fluorinated and non-fluorinated fiber composites with LDPE matrix[J].Polymer Testing,2008,27(5):581-590.
- [10]杨建忠,田孟琪.低温等离子体处理对高强聚乙烯纤维表面影响的研究[J].高科技纤维与应用,2014,39(4):32-35.
- [11]张恒,王李波,高誉鹏,等.纳米改性增强超高分子量聚乙烯复合材料研究进展[J].材料导报,2016,30(5):33-39.
- [12]韦振海.超高分子量聚乙烯纤维的表面仿生修饰及其与橡胶复合材料的研究[D].北京:北京化工大学,2014.
- [13]徐明忠.超高分子量聚乙烯纤维抗蠕变性能研究[D].北京:北京服装学院,2011.
- [14]李春阳,李微微,李瑞培,等.超高分子量聚乙烯纤维复合表面改性及其橡胶基复合材料的力学性能[J].复合材料学报,2015,32(2):409-419.
- [15]李瑞培,李微微,孟立,等.超高分子量聚乙烯纤维的液相氧化改性及其环氧树脂基复合材料的力学和摩擦性能[J].材料导报,2016,30(4):41-46.
- 超强聚乙烯纤维
- 界面结合强度
- 硅烷偶联剂KH-550
- 表面改性
ultra-strong polyethylene fiber - interfacial bonding strength
- silane coupling agent KH-550
- surface modification