纤维混凝土无侧限压缩试验离散元分析Discrete Element Analysis of Unconfined Compression Test of Fiber Reinforced Concrete
陈君君,关晓迪,魏欢欢,马迪
CHEN Jun-jun,GUAN Xiao-di,WEI Huan-huan,MA Di
摘要(Abstract):
基于颗粒流软件PFC~(2D),模拟了纤维混凝土试样单轴压缩破坏过程,分析了混凝土中纤维长度、直径以及细观参数对纤维混凝土力学特性的影响,得出如下结论:纤维在混凝土试样中是通过影响裂隙的发展而改变混凝土试样的力学性能;随着摩擦因数的增加,混凝土试样的单轴抗压强度提高,弹性模量变化不大;随着孔隙率的增大,混凝土试样的弹性模量呈下降趋势,单轴抗压强度先增大后减小;随着纤维长度和直径的增加,混凝土试样的单轴抗压强度先增大再减小,单轴抗压强度峰值对应的纤维长度和直径分别为20 mm和0.2 mm。
Based on the particle flow software PFC~(2D), the uniaxial compression failure process of fiber reinforced concrete samples was simulated, and the influences of fiber length, diameter and microscopic parameters on the mechanical properties of fiber reinforced concrete were analyzed. The conclusions are as follows: the fibers in the concrete sample change the mechanical properties of the concrete samples by affecting the development of the cracks. With the increase of friction factor, the uniaxial compressive strength of concrete samples increases, but the elastic modulus does not change much. With the increase of porosity,the elastic modulus of concrete samples shows a downward trend, and the uniaxial compressive strength first increases and then decreases. With the increase of fiber length and diameter, the uniaxial compressive strength of concrete samples first increases and then decreases, and the fiber length and diameter corresponding to the peak uniaxial compressive strength are 20 mm and 0.2 mm respectively.
关键词(KeyWords):
纤维混凝土;离散元模拟;裂隙扩展;力学性能
fiber reinforced concrete;discrete element simulation;crack propagation;mechanical property
基金项目(Foundation): 国家自然科学基金项目(22002006、5197857);; 河南省高等学校重点科研项目(17A560012);; 河南省重点研发与推广专项(2021022310547)
作者(Author):
陈君君,关晓迪,魏欢欢,马迪
CHEN Jun-jun,GUAN Xiao-di,WEI Huan-huan,MA Di
DOI: 10.16090/j.cnki.hcxw.2022.04.014
参考文献(References):
- [1]孙伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J].硅酸盐学报,2000(2):95-99,104.
- [2]邓宗才.混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J].复合材料学报,2016,33(6):1274-1280.
- [3]杨成蛟,黄承逵,车轶,等.混杂纤维混凝土的力学性能及抗渗性能[J].建筑材料学报,2008(1):89-93.
- [4]HUBERTOVA M.,HELA R.Lightweight fiber reinforced concrete[J].Solid State Phenomena,2016,249:28-32.
- [5]ZHOU J M,MENG G W,HU Y Y,et al.Experimental study on fiber concrete lining in tunnel with seismic dynamic response[J].Advanced Materials Research,2013,671-674(2):1126-1130.
- [6]罗洪林,杨鼎宜,周兴宇,等.聚丙烯纤维长径比对混凝土力学性能的影响研究[J].混凝土,2019(9):25-30.
- [7]张悦.聚丙烯纤维混凝土力学性能及损伤破坏形态研究[D].西安:西安理工大学,2019.
- [8]雷江.聚丙烯纤维碾压混凝土的性能实验分析及其在路面大修施工中的应用[J].公路工程,2018,43(6):174-177,246.
- [9]曾远.土体破坏细观机理及颗粒流数值模拟[D].上海:同济大学,2006.
- [10]CUNDALL P A,STRACK O D L.A discrete numerical model for granular assemblies[J].Géotechnique,2008,30(3):331-336.
- [11]AZEVEDO M N,LEMOS J V.A generalized rigid particle contact model for fracture analysis[J].International Journal for Numerical and Analytical Methods in g Geomechanics,2005,29:269-285.
- [12]ZHENG Z S,WANG S,ZHENG S,et al.Numerical simulation of particle flow for high velocity compaction based on discrete element method[J].Rare Metal Materials and Engineering,2010,39(12):2132-2136.
- [13]GU X Q,HUANG M S,QIAN J G.Discrete element modeling of shear band in granular materials[J].Theoretical and Applied Fracture Mechanics,2014,72:37-49.
- [14]ASADI M,THOENI K,MAHBOUBI A.An experimental and numerical study on the compressive behavior of sand-rubber particle mixtures[J].Computers and Geotechnics,2018,104:185-195.
- [15]PROCHAZKA PP.Application of discrete element methods to fracture mechanics of rock bursts[J].Engineering Fracture Mechanics,2004,7(1):601-618.
- [16]石崇,张强,王盛年.颗粒流(PFC5.0)数值模拟技术及应用[M].北京:中国建筑工业出版社,2018.