超高分子质量聚乙烯纤维及其复合材料的共混改性Blending Modification of Ultra High Molecular Weight Polyethylene Fiber and its Composites
严成,颜甜甜,何勇
YAN Cheng,YAN Tian-tian,HE Yong
摘要(Abstract):
超高分子质量聚乙烯(UHMWPE)纤维是一种重要的战略材料,目前已经广泛应用于防弹背心、安全纺织品、船用绳索和高强度复合材料等领域;但其也存在易蠕变、耐热性差以及再加工、复合困难等问题,亟需高效改性以进一步拓展应用。聚焦近年来UHMWPE的共混改性研究,综述了共混改性对UHMWPE纤维力学、耐热、加工等性能的影响,探讨了共混改性的作用机制,展望了共混改性UHMWPE纤维及其复合材料的应用领域及前景。
Ultrahigh molecular weight polyethylene(UHMWPE) fiber is an important strategic material and has been widely used in bulletproof vests,safety textiles,marine ropes and high strength composites.However,it also has some problems such as low creep resistance,poor heat resistance,difficulty for reprocessing and composite,and efficient modification is urgently needed to further expand its application.The research of blending modification of UHMWPE is focused on,the influence of blending modification on the mechanical,heat resistance and processing properties of UHMWPE fiber is reviewed,the mechanism of blending modification is discussed,and the application field and prospect of blending modified UHMWPE fiber and its composites are prospected.
关键词(KeyWords):
超高分子质量聚乙烯;共混;改性;研究进展
ultrahigh molecular weight polyethylene;blending;modification;research progress
基金项目(Foundation):
作者(Author):
严成,颜甜甜,何勇
YAN Cheng,YAN Tian-tian,HE Yong
DOI: 10.16090/j.cnki.hcxw.2022.05.014
参考文献(References):
- [1] ANDREWS J M, WARD I M. The cold-drawing of high density polyethylene[J]. Journal of Materials Science, 1970, 5:411-417.
- [2] KANAMOTO T, TSURUTA A, TANAKE K, et al. Effect of techniques on drawing of single-crystal mats[J]. Macromolecules, 1988, 21(2):470-477.
- [3] ZWIJNENBURG A, PENNINGS A J. Longitudinal growth of polymer crystals from flowing solutions II. polyethylene crystals in poiseuille flow[J]. Colloid and Polymer Science, 1975, 253:452-461.
- [4] SMITH P, LEMSTRA P J. Ultra-high-strength polyethylene filaments by solution spinning/drawing[J]. Journal of Materials Science, 1980, 15(2):505-514.
- [5]龙聪.改性UHMWPE的合成及其纤维性能[D].上海:东华大学,2019.
- [6] SILVERSTEIN M S, BREUER O, DODIUK H. Surface modification of UHMWPE fibers[J]. Journal of Applied Polymer Science, 1994, 52(12):1785-1795.
- [7] CHAO T Y, GAO S, MU Q. Effect of low-temperature-plasma surface treatment on the adhesion of ultra-highmolecular-weight-polyethylene fibers[J]. Journal of Materials Science, 1993, 28(18):4883-4891.
- [8] TARAFDER S, REISCHL B, RAMASWAMY Y, et al. High-strength fiber-reinforced composite hydrogel scaffolds as biosynthetic tendon graft material[J]. ACS Biomaterials Science&Engineering, 2020, 6(4):1887-1898.
- [9] RATNER S, WEINBERG A, MAROM G. Morphology and mechanical properties of crosslinked PE/PE composite materials[J]. Polymer Composites, 2003, 24(3):422-427.
- [10] MOHAMMAD M, MAHMOOD M, MOJTABA A, et al. Interfacial shear strength characterization of GMA grafted UHMWPE fiber/epoxy/nano clay hybrid nanocomposite materials[J]. The Royal Society of Chemistry, 2016, 6(48):41793-41799.
- [11] TINCER T, COSKUN M. Melt blending of ultra high molecular weight and high density polyethylene:the effect of mixing rate on thermal,mechanical and morphological properties[J]. Polymer Engineering and Science, 1993, 33(19):1243-1250.
- [12] AHMAD M, WAHIT M U, KADIR M R A. Mechanical, rheological,and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite[J]. The Scientific World Journal, 2012:1-13.
- [13] ZHANG Q, WANG Z Q, CHEN Y. Structure evolution of ultra high molecular weight polyethylene/montmorillonite nanocomposite fibers prepared by melt spinning[J]. Journal of Applied Polymer Science, 2013, 130(6):3930-3936.
- [14] WOOD W, LI B, ZHONG W H. Influence of phase morphology on the sliding wear of polyethylene blends filled with carbon nanofibers[J]. Polymer engineering and Science, 2010, 50(3):613-623.
- [15]李晓梅,周威,蒋涛. UHMWPE/PLA共混体系的制备[J].合成树脂及塑料, 2008, 25(2):11-15.
- [16]刘丽超.超高分子量聚乙烯改性料流变特性及熔融纺丝研究[D].北京:北京化工大学, 2019.
- [17] OHTA T. Review on processing ultra high tenacity fibers from flexible polymer[J]. Polymer Engineering and Science, 1983, 23(13):697-703.
- [18] NAKAJIMA T, KAJIWARA K, MCLNTYRE J E. Advanced fibre spinning technology[M]. UK:Woodhead Publishing, 1994.
- [19] YEH J T, WANG C K, HUANG L K, et al. Ultradrawing and ultimate tenacity properties of ultrahigh molecular weight polyethylene composite fibers filled with nanosilica particles with varying specific surface areas[J]. Journal of Nanomaterials, 2015:1-16.
- [20] YEH J T, WANG C K, YU W, et al. Ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene composite fibers filled with functionalized nanoalumina fillers[J]. Polymer Engineering and Science, 2015, 55(10):2205-2214.
- [21] FAN W X, WANG C K, TSAI C C, et al. Ultradrawing properties of ultrahigh molecular weight polyethylenes/functionalized activated nanocarbon as-prepared fibers[J]. The Royal Society of Chemistry, 2016, 6(4):3165-3175.
- [22] HOOGSTEEN W, BRINKE G T, PENNINGS A J. DSC experiments on gel-spun polyethylene fibers[J]. Colloid and Polymer Science, 1988,266:1003-1013.
- [23] LIU Z F, TIAN L D, YAO T D, et al. Temporal and spatial variations of δ18O in precipitation of the Yarlung Zangbo River basin[J]. Journal of Geographical Sciences, 2007, 17(3):317-326.
- [24] ZHANG Y, YU J.R, ZHOU C.J, et al. Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2nanocomposite fibers[J]. Polymer Composites, 2010, 31(4):684-690.
- [25] HE R Q, CHANG Q X, HUANG X J, et al. The interfacial adhesion of wood fiber-reinforced UHMWPE composite filled with acid-treated clay[J]. Surface and Interface Analysis, 2018, 50(1):106-110.
- [26] ZHU D, WANG Y X, ZHANG X L, et al. Interfacial bond property of UHMWPE composite[J]. Polymer Bull, 2010, 65(1):35-44.
- [27]邝金艳,于俊荣,肖明明,等. EVA共混改性UHMWPE纤维的表面性能[J].合成纤维工业, 2011, 34(5):1-4.
- [28] YANG S Y, HERNANDEZ K, LOZANO K, et al. Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene[J]. Composite Part B, 2007, 38(2):228-235.
- [29] RUAN S L, GAO P, YANG X G. Toughening of high performance ultrahigh molecular polyethylene using multiwalled carbon nanotubes[J].The Hong Kong University of Science and Technology, 2003, 44(19):5643-5654.
- [30] REN X, WANG X Q, SUI G, et al. Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin-screw extrusion[J]. Journal of Applied Polymer Science, 2008, 107(5):2837-2845.
- [31] YIN X C, YIN Y H, CHENG D, et al. In-situ bubble stretching assisted melt extrusion for the preparation of HDPE/UHMWPE/CF composites[J]. Polymers, 2019, 11(12):2054-2074.
- [32] LI B, LI R L. Preparation and property of ultrahigh molecular weight polyethylene/halloysite nanotube fiber[J]. Fibers and Polymers, 2016, 17(7):1043-1047.
- [33]李燕.多壁碳纳米管改性超高分子量聚乙烯纤维的研究[D].上海:东华大学, 2012.
- [34]葛亮,赖彦睿,金海涛,等.一种聚烯烃增强耐磨纤维绳索及其制造工艺[P]. CN111962316A. 2020-11-20.
- [35]尹璞.稀土处理玻璃微珠和短玻纤增强PA6/UHMWPE复合材料的性能[D].南京:南京航空航天大学, 2009.
- [36] LIU C Z, REN L Q, TONG J, et al. Statistical wear analysis of PA-6/UHMWPE alloy, UHMWPE and PA-6[J]. Wear, 2001, 249(1):31-36.
- [37] THOSTENSON E, REN Z F, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J].Composites Science and Technology, 2001, 61(13):1899-1912.
- [38] KIMURA T, AGO H, TOBITA M, et al. Polymer composites of carbon nanotubes aligned by a magnetic field[J]. Advanced Materials, 2002, 14(19):1380-1383.
- [39] BIN Y Z, KITANAKA M, ZHU D, et al. Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions[J]. Macromolecules, 2003, 36(16):6213-6219.
- [40] CHEN Q Y, BIN Y, MATSUO M. Characteristics of ethylene-methyl methacrylate copolymer and ultrahigh molecular weight polyethylene composite filled with multiwall carbon nanotubes prepared by gelation/crystallization from solutions[J]. Macromolecules, 2006, 39(19):6528-6536.
- [41] WIRIYA T, MAURICE BALIK C, SPONTAK R J. Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber[J]. Journal of Polymer Science:Part B:Polymer Physics, 2002, 40(10):1013-1023.