非织造布内部结构重建及其性能模拟的研究进展Research Progress in Internal Structure Reconstruction and Performance Simulation of Nonwovens
柯真霞;余灵婕;朱梦秋;支超;
KE Zhen-xia;YU Ling-jie;ZHU Meng-qiu;ZHI Chao;School of Textile Science and Engineering, Xi′an Polytechnic University;Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi′an Polytechnic University;
摘要(Abstract):
非织造材料的内部纤维堆砌结构对其过滤、压缩、拉伸、断裂及破坏行为等具有重要影响。因此,针对当前非织造布的内部结构表征方法和基于内部结构的各项性能模拟方法进行讨论与分析。介绍了内部结构表征的三种主要建模方法,即随机生长法、Micro-CT法和图像建模法,并对其性能的两种模拟方法(理论模拟和数值模拟)进行文献总结和分析,最后对各方法进行对比和分析,明确未来发展方向及待解决的问题。
The internal fiber stacking structure of nonwovens has an important impact on its filtration, compression, tension, fracture and other properties. Therefore, the current internal structure characterization methods of nonwovens and the progress of various performance simulation methods based on internal structure are discussed and analyzed, and three types of main modeling methods for internal structure characterization are introduced, namely random growth method, Micro-CT method and image modeling method. Furthermore, two main methods for its performance simulation are theoretical simulation and numerical simulation. Finally, the reviewed methods are compared and analyzed to clarify the future development direction and the problems to be solved.
关键词(KeyWords):
非织造布;建模;性能模拟
nonwovens;modeling;performance simulation
基金项目(Foundation): 国家自然科学基金青年项目(62201441);; 陕西省教育厅专项科研计划(22JK0394)
作者(Authors):
柯真霞;余灵婕;朱梦秋;支超;
KE Zhen-xia;YU Ling-jie;ZHU Meng-qiu;ZHI Chao;School of Textile Science and Engineering, Xi′an Polytechnic University;Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi′an Polytechnic University;
DOI: 10.16090/j.cnki.hcxw.2023.03.013
参考文献(References):
- [1] WANG M, HE J H, YU J Y, et al. Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials[J]. International Journal of Thermal Sciences, 2006, 46(9):848-855.
- [2] WANG M, KANG Q J, PAN K N. Thermal conductivity enhancement of carbon fiber composites[J]. Applied Thermal Engineering, 2009, 29(2-3):418-421.
- [3] ALTENDORF H, JEULIN D. Random-walk-based stochastic modeling of three-dimensional fiber systems[J]. Physical Review E, 2011, 83(4):041804.
- [4] GAISELMANN G, FRONING D, T?TZKE C, et al. Stochastic 3D modeling of non-woven materials with wet-proofing agent[J]. International Journal of Hydrogen Energy, 2013, 38(20):8448-8460.
- [5]张华.纳米多孔材料传热特性分析研究[D].南京:南京理工大学,2014.
- [6] LIU Q, LU Z, HU Z, et al. Finite element analysis on tensile behaviour of 3D random fibrous materials:model description and meso-level approach[J]. Materials Science and Engineering:A, 2013, 587:36-45.
- [7] PARK S. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks[J]. Computer Methods and Programs in Biomedicine, 2017, 148:91-98.
- [8] LIU L F, CHU C Y. Modeling the slurry filtration performance of nonwoven geotextiles[J]. Geotextiles and Geomembranes, 2006, 24(5):325-330.
- [9] IDARI S, WANG Y, HARRIS T A L. Modeling of gas diffusion layers with curved fibers using a genetic algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(36):23130-23140.
- [10] JIN X M, YANG L J, DU X Z, et al. Modeling filtration performance of elliptical fibers with random distributions[J]. Advanced Powder Technology, 2017, 28(4):1193-1201.
- [11] FAESSEL M, DELISéE C, BOS F, et al. 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis[J]. Composites Science and Technology, 2004, 65(13):1931-1940.
- [12] SCHLADITZ K, PETERS S, REINEL-BITZER D, et al. Design of acoustic trim based on geometric modeling and flow simulation for nonwoven[J]. Computational Materials Science, 2006, 38(1):56-66.
- [13] DIETRICH S, GEBERT J M, STASIUK G, et al. Microstructure characterization of CVI-densified carbon/carbon composites with various fiber distributions[J]. Composites Science and Technology, 2012, 72(15):1892-1900.
- [14] GAISELMANN G, T?TZKE C, MANKE I, et al. 3D microstructure modeling of compressed fiber-based materials[J]. Journal of Power Sources, 2014, 257:52-64.
- [15] BORDELON A C, ROESLER J R. Spatial distribution of synthetic fibers in concrete with X-ray computed tomography[J]. Cement and Concrete Composites, 2014, 53:35-43.
- [16] WANG Q X, ZHANG H M, CAI H, et al. Statistical three-dimensional reconstruction of co-continuous ceramic composites[J]. Finite Elements in Analysis&Design, 2016, 114:85-91.
- [17] SOLTANI P, JOHARI M S, ZARREBINI M. 3D fiber orientation characterization of nonwoven fabrics using X-ray micro-computed tomography[J]. Word Journal of Textile Engineering and Technology, 2016, 1:41-47.
- [18] HUANG X, ZHOU Q, LIU J, et al. 3D stochastic modeling, simulation and analysis of effective thermal conductivity in fibrous media[J].Powder Technology, 2017, 320:397-404.
- [19] HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on micro-CT aided geometric modeling[J]. Composites Part A:Applied Science and Manufacturing, 2019, 124:105481.
- [20] PUSZKARZ A K, WOJCIECHOWSKI J, KRUCI?SKA I. Analysis of the thermal insulation of textiles using thermography and CFD simulation based on micro-CT models[J]. Autex Research Journal, 2020, 20(3):344-351.
- [21]景慧.散纤维集合体的微观结构特征及压缩力学行为表征[D].上海:东华大学, 2018.
- [22] MAITY S, SINGHA K, SINGHA M,等.非织造材料微观结构数字容积成像[J].国际纺织导报, 2013, 41(9):67-74.
- [23] SHIM E, POURDEYHIMI B, LATIFI M. Three-dimensional analysis of segmented pie bicomponent nonwovens[J]. The Journal of The Textile Institute, 2010, 101(9):773-787.
- [24] VENU L B, SHIM E, ANANTHARAMAIAH N, et al. Three-dimensional structural characterization of nonwoven fabrics[J]. Microscopy and Microanalysis, 2012, 18(6):1368-1379.
- [25] JAGANATHAN S, VAHEDI TAFRESHI H, POURDEYHIMI B. A realistic approach for modeling permeability of fibrous media:3D imaging coupled with CFD simulation[J]. Chemical Engineering Science, 2007, 63(1):244-252.
- [26] JAGANATHAN S, TAFRESHI V H, POURDEYHIMI B. Modeling liquid porosimetry in modeled and imaged 3-D fibrous microstructures[J].Journal of Colloid and Interface Science, 2008, 326(1):166-175.
- [27] SAMBAER W, ZATLOUKAL M, KIMMER D. 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process[J]. Chemical Engineering Science, 2010, 66(4):613-623.
- [28] GAISELMANN G, THIEDMANN R, MANKE I, et al. Stochastic 3D modeling of fiber-based materials[J]. Computational Materials Science,2012, 59:75-86.
- [29] DAINO M M, KANDLIKAR S G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International Journal of Hydrogen Energy, 2012, 37(6):5180-5189.
- [30] ZHU X, QIAN F, LU J, et al. Numerical study of the solid volume fraction and pressure drop of fibrous media by response surface methodology[J]. Chemical Engineering&Technology, 2013, 36(5):788-794.
- [31] ALTENDORF H, JEULIN D, WILLOT F. Influence of the fiber geometry on the macroscopic elastic and thermal properties[J]. International Journal of Solids and Structures, 2014, 51(23-24):3807-3822.
- [32] LUO G Q, SHI L P, ZHONG Y S, et al. Compressive damage of threedimensional random fibrous ceramic materials:a meso-mechanics modeling and experimental study[J]. Ceramics International, 2018, 44(13):15690-15699.
- [33]宋磊磊.高性能纤维针刺毡三维重构及其复合材料性能表征[D].天津:天津工业大学, 2016.
- [34] RAWAL A, SARASWAT H. Pore size distribution of hybrid nonwoven geotextiles[J]. Geotextiles and Geomembranes, 2010, 29(3):363-367.
- [35] DAS D, DAS S, ISHTIAQUE S M. Optimal design of nonwoven air filter media:effect of fibre shape[J]. Fibers and Polymers, 2014, 15(7):1456-1461.
- [36] LIU X T, YAN X, ZHANG H P. Effects of pore structure on sound absorption of kapok-based fiber nonwoven fabrics at low frequency[J]. Textile Research Journal, 2016, 86(7):755-764.
- [37] ZHI C, ZHU G Q, MENG J G, et al. Compression properties of syntactic foam reinforced by warp-knitted spacer fabric:theoretical compression strength model and experimental verification[J]. Cellular Polymers An International Journal, 2018, 37(1):21-32.
- [38]赵友军,付海明,李阳.过滤风速对纤维过滤器压力损失的试验研究[J].洁净与空调技术, 2007(3):14-16.
- [39]李阳,付海明,赵友军.固定床颗粒过滤压降的正交实验及回归分析[J].能源与环境, 2007(5):16-17,23.
- [40] NABOVATI A, LLEWELLIN E W, SOUSA A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(6-7):860-869.
- [41] SABERI E, NAJAR S S, ABDELLAHI S B, et al. A hyperelastic approach for finite element modelling puncture resistance of needle punched nonwoven geotextiles[J]. Fibers and Polymers, 2017, 18(8):1623-1628.
- [42] RIDRUEJO A, GONZáLEZ C, LLORCA J. Damage micromechanisms and notch sensitivity of glass-fiber non-woven felts:an experimental and numerical study[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(10):1628-1645.
- [43] KULACHENKO A, UESAKA T. Direct simulations of fiber network deformation and failure[J]. Mechanics of Materials, 2012, 51:1-14.
- [44] HOU X, ACAR M, SILBERSCHMIDT V V. Non-uniformity of deformation in low-density thermally point bonded non-woven material:effect of microstructure[J]. Journal of Materials Science, 2010, 46(2):307-315.
- [45] YIM S O, LEE W J, CHO D H, et al. Finite element analysis of compressive behavior of hybrid short fiber/particle/mg metal matrix composites using RVE model[J]. Metals and Materials International, 2015, 21(2):408-414.
- [46] QIAN F, HUANG N, LU J, et al. CFD-DEM simulation of the filtration performance for fibrous media based on the mimic structure[J]. Computers&Chemical Engineering, 2014, 71:478-488.
- [47] LING T Y, WANG J, PUI D Y H. Numerical modeling of nanoparticle penetration through personal protective garments[J]. Separation and Purification Technology, 2012, 98:230-239.
- [48] LI W, SHEN S N, LI H. Study and optimization of the filtration performance of multi-fiber filter[J]. Advanced Powder Technology, 2016, 27(2):638-645.
- [49] HOSSEINI S A, TAFRESHIV H. Modeling permeability of 3D nanofiber media in slip flow regime[J]. Chemical Engineering Science, 2009, 65(6):2249-2254.
- [50] HOSSEINI S A, TAFRESHIV H. 3D simulation of particle filtration in electrospun nanofibrous filters[J]. Powder Technology, 2010, 201(2):153-160.
- [51] TANO B F G, STOLTZ G, TOUZE-FOLTZ N, et al. A numerical modelling technique for geosynthetics validated on a cavity model test[J].Geotextiles and Geomembranes, 2017, 45(4):339-349.
- [52]缪城.纤维过滤材料过滤过程的数值模拟[D].苏州:苏州大学,2011.
- 柯真霞
- 余灵婕
- 朱梦秋
- 支超
KE Zhen-xia- YU Ling-jie
- ZHU Meng-qiu
- ZHI Chao
- School of Textile Science and Engineering
- Xi′an Polytechnic University
- Key Laboratory of Functional Textile Material and Product
- Ministry of Education
- Xi′an Polytechnic University
- 柯真霞
- 余灵婕
- 朱梦秋
- 支超
KE Zhen-xia- YU Ling-jie
- ZHU Meng-qiu
- ZHI Chao
- School of Textile Science and Engineering
- Xi′an Polytechnic University
- Key Laboratory of Functional Textile Material and Product
- Ministry of Education
- Xi′an Polytechnic University