溶剂气化交联对纳米纤维膜力学性能的影响Effect of Solvent Evaporation Cross-Linking on Mechanical Property of Nanofiber Membrane
李浩天,宋平,乔天奎,蒋苏臣,宋晓峰
LI Hao-tian,SONG Ping,QIAO Tian-kui,JIANG Su-chen,SONG Xiao-feng
摘要(Abstract):
源于CO_2活化法制备活性炭系统,用自制装置探讨了溶剂气化交联方法对电纺聚乙丙交酯共聚物(PLGA)纳米纤维膜力学性能的改变。用扫描电镜观察了纤维交联前后的形貌变化。拉伸试验表明:适当交联改善了PLGA纤维膜的拉伸强度,但断裂伸长率明显下降。与交联时间和交联溶剂比例相比,氮气流速对纳米纤维的拉伸强度和断裂伸长率的影响更显著。细胞毒性测试表明交联纳米纤维膜无细胞毒性。
According to the system of activated carbon prepared by CO_2 activation,the device was made toinvestigate into the effect of solvent evaporation cross-linking on mechanical property of fibrous membrane.The morphological change of PLGA fibers before and after cross-linking was observed by SEM.The tensileexperiment showed that the tensile strength of PLGA fiber membrane could be modified by moderate cross-linking,but its elongation at break significantly dropped.Compared to time and mixture ratio of solvents,the effect of nitrogen flow rate on the mechanical property was more outstanding.MTT experiment indicatedthat the cross-linked fibrous membrane was non-cytotoxicity.
关键词(KeyWords):
静电纺丝;聚乙丙交酯共聚物;溶剂气化交联;力学性能
electrospinning;PLGA;solvent evaporation cross-linking;mechanical property
基金项目(Foundation): 长春市重大科技攻关项目(2014111);; 吉林省教育厅项目(2014123);; 吉林省科技厅项目(20130102065JC)
作者(Author):
李浩天,宋平,乔天奎,蒋苏臣,宋晓峰
LI Hao-tian,SONG Ping,QIAO Tian-kui,JIANG Su-chen,SONG Xiao-feng
DOI: 10.16090/j.cnki.hcxw.2016.03.014
参考文献(References):
- [1]Wang Z G,Wan L S,Liu Z M,et al.Enzyme immobilization on electrospun polymer nanofibers:An overview[J].Journal of Molecular Catalysis B:Enzymatic,2009,56:189-195.
- [2]Zhang Y,Ouyang H,Lim C T,et al.Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds[J].Journal of Biomedical Materials Research,Part B:Applied Biomaterials,2004,72:156-165.
- [3]Han N,Johnson Jed,Lannutti J J,et al.Hydrogel-electrospun fiber composite materials for hydrophilic protein release[J].Journal of Control Release,2012,158(1):165-170.
- [4]Jia H,Zhu G,Vugrinovich B,et al.Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts[J].Biotechnology Progress,2002,18(5):1 027-1 032.
- [5]Szentivanyi A,Chakradeo T,Zernetsch H,et al.Electrospun cellular microenvironments:Understanding controlled release and scaffold structure[J].Advanced Drug Delivery Reviews,2011,63:209-220.
- [6]Boudriot u,Dersch R,Greiner A,et al.Electrospinning approaches toward scaffold engineering-a brief overview[J].Artificial Organs,2006,30(10):785-792.
- [7]Xiao Bin,Li Congju.The mechanical properties of electrospun PLA/calcium phosphate composite nanofibers[J].New Chemical Materials,2008,36:53-55.
- [8]Song X F,Ling F G,Ma L L,et al.Electrospun hydroxyapatite grafted poly(L-lactide)/poly(lactic-co-glycolic acid)nanofibers for guided bone regeneration membrane[J].Composites Science and Technology,2013,79:8-14.
- [9]Zhang Pengyun,Zhang Jiansong,Xu Xiaohong,et al.Genipin effect on Chemical modification of electrospun gelatin nanofibrous membrane[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2009,13(8):1 500-1 504.
- [10]Sahlin H,Nygren H.Cytotoxicity testing of wound-dressing materials[J].Alternatives to laboratory animals:ATLA,2000,29(3):269-275.
- [11]Song X F,Ling F G,Li H T,et al.Tuned morphological electrospun hydroxyapatite nanofibers via p H[J].Journal of Bionic Engineering,2012,9:478-483.
- [12]Chen Ping.Applied Mathematical Statistics[M].Beijing:Machine Industry Press,2008:22.
- [13]Kwon I K,Kidoaki S,Matsuda T.Electrospun nano-to-microfiber fabrics made of biodegradable copolyesters:Structural characteristics,mechanical properties and cell adhesion potential[J].Biomaterials,2005,26(18):3 929-3 939.