PVA纤维/超高韧性水泥基复合材料的性能研究Study on Properties of PVA Fiber/Ultra-High Toughness Cement-Based Composites
周晓媛,彭玉林
ZHOU Xiao-yuan,PENG Yu-lin
摘要(Abstract):
为了提高材料的韧性和耐久性,针对以聚乙烯醇(PVA)纤维为增强材料的超高韧性水泥基复合材料(ECC),研究了不同PVA纤维体积分数对PVA-ECC的极限应变、力学强度等性能的影响。研究表明,PVA纤维体积分数为0、1.0%、1.5%、2.0%时,PVA-ECC的极限拉应变平均值分别为0.014%、0.40%、1.26%和3.15%,最高可达4.73%。PVA纤维体积分数为2.0%条件下,PVA-ECC能够完全实现多点开裂,在拉伸荷载条件下出现大量的细微裂缝,表现出典型的应变硬化特性,极限拉应变基本超过3.0%。相较不掺PVA纤维的基准试件,PVA纤维体积分数为1.0%、1.5%、2.0%时,PVA-ECC试件的抗折强度分别提高了181%、198%和249%,提升效果显著;拉伸应力提高了54%~77%。
In order to improve the toughness and durability of materials, for the ultra-high toughness cement-based composites(ECC) reinforced by polyvinyl alcohol(PVA) fibers, the effects of different volume fractions of PVA fibers on the ultimate strain, mechanical strength and other properties of PVA-ECC were studied. The results show that when the volume fraction of PVA fiber is 0, 1.0%, 1.5% and 2.0%, the average ultimate tensile strain of PVA-ECC is 0.014%, 0.40%, 1.26% and 3.15%, respectively, and the maximum is 4.73%. When the volume fraction of PVA fiber is 2.0%, PVA-ECC can fully realize multi-point cracking, and a large number of fine cracks appear under tensile load, showing typical strain hardening characteristics, and the ultimate tensile strain is more than 3.0%. Compared with the reference specimen without PVA fiber, when the volume fraction of PVA fiber is 1.0%, 1.5% and 2.0%, the flexural strength of the PVA-ECC specimen is increased by 181%, 198% and 249%, respectively, showing a significant improvement effect. The tensile stress is increased by 54%~77%.
关键词(KeyWords):
PVA-ECC;超高韧性;应变硬化;多缝开裂;极限拉应变
PVA-ECC;ultra high toughness;strain hardening;multiple cracks;ultimate tensile strain
基金项目(Foundation):
作者(Author):
周晓媛,彭玉林
ZHOU Xiao-yuan,PENG Yu-lin
DOI: 10.16090/j.cnki.hcxw.2023.05.020
参考文献(References):
- [1]王永波. PVA纤维增强水泥基复合材料的性能研究[D].重庆:重庆大学, 2005.
- [2]赵方华,车新俊.纤维对水泥基复合材料性能影响研究进展[J].合成材料老化与应用, 2022, 51(3):146-148.
- [3]李捷斌,王飞龙.合成纤维对超高韧水泥基复合材料力学性能的影响[J].合成纤维, 2019, 48(7):40-42, 55.
- [4] LI V C, WU C, WANG S X, et al. Interface tailoring for strain hardening polyvinyl alcohol-engineered cementitious composite(PVA-ECC)[J].ACI Materials Journal, 2002, 99(5):463-472.
- [5] FUKUYAMA H, SATO Y, LI V C, et al. Ductile engineered cementitious composites elements for seismic structural application[C]//Proceedings of the 12th WCEE, 2000:1672-1679.
- [6] MATSUMOTO T, SUTHIWARAPIRAK P, KANDA T. Mechanism of multiple cracking and fracture of DFRCCs under failure flexure[J]. Journal of Advanced Technology, 2003, 1(3):299-306.
- [7] KABELE P, LI V C, HORII H, et al. Use of BMC for ductile structural members[C]//Warsaw, Poland:Proceeding of 5th International Symposium on Brittle Matrix Composites(BMC-5), 1997:579-588.
- [8] KANDA T, WATANABE S, LI V C. Application of pseudo strain hardening cementitious composites to shear resistant structural elements[C]//Freiburg, Germany:Fracture Mechanics of Concrete Structures Proceeding of FRAMCOS-3, 1998:1477-1490.
- [9]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报, 2008, 41(6):45-60.
- [10]张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究[C]//纤维混凝土的技术进展与工程应用:第十一届全国纤维混凝土学术会议论文集,大连:2006.
- [11]高淑玲,徐世烺.单边切口薄板研究聚乙烯醇纤维增强水泥基复合材料断裂韧性[J].工程力学, 2007, 24(11):12-18.
- [12]高曙光,马锋玲,刘艳霞,等.粉煤灰掺量对PVA-ECC性能的影响[J].建材与装饰, 2021, 17(8):43-44.
- [13]郑银林,马锋玲,刘艳霞.增稠剂掺量对PVA-ECC性能的影响[J].中国水利水电科学研究院学报, 2012, 10(4):283-287.
- PVA-ECC
- 超高韧性
- 应变硬化
- 多缝开裂
- 极限拉应变
PVA-ECC - ultra high toughness
- strain hardening
- multiple cracks
- ultimate tensile strain