接地电极对静电纺丝制备取向纤维的影响Influence of Parallel Electrode on Oriented Fiber by Electrospinning
任小玲,李红,刘运荣
REN Xiao-ling,LI Hong,LIU Yun-rong
摘要(Abstract):
通过合理简化加接地平行电极后的静电纺丝装置,利用有限元模型,借助Comsol Multiphysics 3.5a的静电场模块模拟并分析了静电纺丝过程中,平行电极参数的变化对整个电场分布的影响。同时结合实际因素,探讨了如何选择接地平行电极参数才能制备良好的平行取向纤维。通过分析比较发现:在加上接地平行电极后,电场会在基板附近产生水平方向的分量,正是这一分量使得纤维可以接地平行搭接在电极上;同时当接地平行电极间距增加时,电场水平分量将不足以促使纤维平行搭接;当电极介电常数减少时,电场水平分量也会明显减少;当接地平行电极高度增加时,水平分量亦会增加,但不利于溶剂挥发。因此结合理论分析和实际因素,需选用宽度和高度适中的金属平行电极,才容易制备高质量的平行纤维。
Based on the FEM model and simplifying structure of electrospinning machine, the paper analyz-es the influence of parallel electrode on the electrostatic field of electrospinning process though Comsol Mul-tiphysics 3.5a. It also discusses the way to choose constants in order to prepare parallel oriented nanofibers.After adding two parallel electrodes on the substrate, it finds that in the distribution of electrostatic fieldnear the substrate there is horizontal component, which maybe the reason of arrangement of parallel nanofi-bers. If the distance of the two parallel electrodes is increased, the horizontal component may not be able tomake the fiber parallel. When the dielectric constant of electrode is reduced, the horizontal component be-comes much unobvious. And the horizontal component also increase with the height of the parallel elec-trodes, but increasing height is unfavourable to the evaporation of solvent. Considering theoretical analysisand practical factors, metal parallel electrode with advisable distance and height should be used.
关键词(KeyWords):
静电纺丝;电场;平行电极;有限元分析
electrospinning,electrostatic field,parallel electrode,FEM
基金项目(Foundation):
作者(Author):
任小玲,李红,刘运荣
REN Xiao-ling,LI Hong,LIU Yun-rong
DOI: 10.16090/j.cnki.hcxw.2014.11.009
参考文献(References):
- [1]IIJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(7):56-58.
- [2]Gu Y,CHEN D,JIAOX.Synthesis and electrochemical properties of nanostructured Li Co O2fibers as cathode materials for lithium-ion batteries[J].The Journal of Physical Chemistry B,2005,109(38):17 901-17 906.
- [3]WANG X F,DING B,YU J Y,et al.A highly sensitive humidity sensor based on a nanofibers membrane coated quartz crystal microbalance[J].Nanotechnology,2010,21(5):055502.
- [4]Ji W,YANG F,BEUCKEN J J P,et al.Fibours scaffolds loaded with protein prepared by blend or coaxial electrospinning[J].Acta Biomaterialia,2010,6(11):4 199-4 270.
- [5]LI D,XIA Y N.Electrospinning of nanofibers:reinventing the wheel[J].Advanced Materials,2004,16(14):1 151-1 170.
- [6]DOSHI J,RENEKER D H.Electrospinning process and applications of electrospun fibers[J].Journal of Electrostatics,1995,35(2-3):151-160.
- [7]LI D,XIA Y N.Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[j].Nano Letters,2004,4(5):933-938.
- [8]SUN Z C,ZHUSSMAN E,YARIN A L,et al.Compound coreshell polymer nanofibers by co-electrospinning[J].Advanced Material,2003,15(22):764-765.
- [9]ZHAO Y,CAO X Y,JIANG L.Bio-mimic multichannel microtubes by a facile method[J].Journal of the American Chemical Society,2007,129(4):764-765.
- [10]LI D,WANG Y L,XIA Y N.Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J].Nano Letters,2003,3(8):1 167-1 171.
- [11]MATHEW G,HONG J P,RHEE J M,et al.Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylenes terephthalate)fibers[J].Journal of Applied Polymer Science,2006,101(3):2 017-2 021.
- [12]THERON A,ZUSSMAN E,YARIN A L.Electrostatic field-assisted alignment of electrospun nanofibers[J].Nanotechnology,2011,12(3):384-390.