PTMG-PBT/PBT并列复合弹性纤维的制备工艺Preparation Process of PTMG-PBT/PBT Side-by-Side Composite Elastic Fiber
李军令,何崎,柯福佑,陈烨,王华平,靳高岭
LI Jun-ling,HE Qi,KE Fu-you,CHEN Ye,WANG Hua-ping,JIN Gao-ling
摘要(Abstract):
以聚醚酯四氢呋喃均聚醚-聚对苯二甲酸丁二醇酯(PTMG-PBT)和PBT为原料,按照50∶50的质量比,通过熔融纺丝制备了具有高度自卷曲的并列复合弹性纤维。研究复合纤维的制备工艺参数,包括牵伸倍数、牵伸热定形温度、热处理温度和时间对并列复合弹性纤维力学性能和卷曲性能的影响。试验结果表明:牵伸倍数的增大能够极大地改变复合纤维的卷曲形貌,改善卷曲性能以及显著提高复合纤维的模量和强度;牵伸温度140℃时,复合纤维力学性能和卷曲性能最佳;热处理温度100℃、热处理时间5 min时,复合纤维的卷曲率和卷曲回复率达到最佳,分别为60%和53%。
Using PTMG-PBT and PBT as raw materials, according to the mass ratio of 50∶50, the side-by-side composite elastic fiber with a high degree of self-crimp was prepared by melt spinning, and the influ-ence of preparation process parameters of composite fiber, including drafting ratio and drafting-setting tem-perature, heat treatment temperature and time on the mechanical properties and crimp performance of thecomposite fiber was studied. The experimental results show that the increase of the drafting ratio can greatlychange the crimp morphology and improve the crimp performance of the composite fiber and significantly in-crease the modulus and strength of the composite fiber. When the drafting temperature is 140 ℃, the me-chanical proprties and crimp properties of the composite fiber are the best. When the heat treatment temper-ature is 100 ℃ and the heat treatment time is 5 min, the coil curvature and crimp recovery rate of compositefiber reach the optimal value of 60% and 53%, respectivelyAbstract:.
关键词(KeyWords):
PTMG;并列复合纤维;热处理;卷曲性能
PTMG;side-by-side composite fiber;heat treatment;crimp performance
基金项目(Foundation): 国家重点研发计划(2017YFB0309200);; 浙江省领军型创新创业团队(2019R01011)
作者(Author):
李军令,何崎,柯福佑,陈烨,王华平,靳高岭
LI Jun-ling,HE Qi,KE Fu-you,CHEN Ye,WANG Hua-ping,JIN Gao-ling
DOI: 10.16090/j.cnki.hcxw.2021.04.004
参考文献(References):
- [1]王鸣义.“环境友好型”聚酯纤维的产品开发[J].合成纤维, 2009,38(3):1-6.
- [2]金离尘.我国聚酯纤维工业的高速发展[J].聚酯工业, 2003(6):1-4.
- [3] FRATERNALI F, CIANCIA V, CHECHILE R, et al. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete[J]. Composite Structures, 2011, 93(9):2368-2374.
- [4]梁倩倩,江涌,刘敏,黎永久,等.抗菌聚酯切片及纤维的开发[J].纺织科技进展, 2019(8):13-16.
- [5]蒋禹旭,刘晓东. PET/PTT双组分弹性纤维的结构及热性能研究[J].聚酯工业, 2020, 33(3):20-23.
- [6]汪一栋,卢新宇,王春燕,等. PTT/PET自卷曲复合纤维的工艺性能[J].合成纤维, 2020, 49(4):8-10.
- [7]钱伯章. PTT和原位功能化PET聚合技术填补新型聚酯领域空白[J].合成纤维, 2019, 48(11):57-58.
- [8]张大省,周静宜.双组分并列复合纤维的弹性形成机理[J].纺织导报, 2016(12):46-51.
- [9]周静宜,张大省,王春梅.双组分并列复合纤维“哑铃型”结构的控制[J].纺织导报, 2015(1):45-48.
- [10] HUA T, WONG N S, TANG W M. Study on properties of elastic core-spun yarns containing a mix of spandex and PET/PTT bi-component filament as core[J]. Textile Research Journal, 2018, 88(9):1065-1076.
- [11]张明成,王兴柏. PTT/PET并列型复合纤维纺丝技术[J].纺织科学研究, 2018(4):78-80.
- [12] LIU W, ZHANG J, LIU H. Conductive bicomponent fibers containing polyaniline produced via side-by-side electrospinning[J]. Polymers,2019, 11(6):954-223.
- [13]李明明,李军令,陈烨,等.湿热处理对并列复合聚酯纤维性能的影响[J].合成纤维, 2019, 48(8):12-15.