芳纶/碳纤维混杂增强树脂复合材料的抗冲击性能Impact Resistance Performance of Aramid Fiber/Carbon Fiber Hybrid Reinforced Resin Composites
范志平,靳高岭
FAN Zhi-ping,JIN Gao-ling
摘要(Abstract):
对芳纶/碳纤维混杂增强树脂复合材料抗冲击性能研究进展进行了综述,复合材料的性能受各种制造因素影响,包括纤维含量、纤维取向、堆叠顺序、层压形式和制造工艺等。归纳了纤维的混杂方式、堆叠顺序、混杂比例以及冲击速度的大小对复合材料抗冲击性能的影响。通过分析影响因素对研发复合材料起到一定的指导作用,并有助于提高复合材料的抗冲击性能和拓宽复合材料的应用范围。
The research progress of impact resistance performance of aramid fiber/carbon fiber hybrid reinforced resin composites is reviewed. The performance of composites can be affected by various manufacturing factors including fiber content, fiber orientation, stacking order, lamination form and manufacturing process. The influence of fiber blending mode, stacking order, blending ratio and impact velocity on composites is summarized. Some guidance for the research and development of composites are provided by analyzing the influencing factors, it is helpful to improve the impact resistance performance of composites and broaden the application range of composites.
关键词(KeyWords):
芳纶;碳纤维;复合材料;抗冲击性能
aramid fiber;carbon fiber;composite;impact resistant performance
基金项目(Foundation):
作者(Author):
范志平,靳高岭
FAN Zhi-ping,JIN Gao-ling
DOI: 10.16090/j.cnki.hcxw.2022.07.003
参考文献(References):
- [1] FOSTER N G. Designing composite structures for optimum in-service performance with reference to the firefly aircraft and the jetstream baggage pod[J]. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 2000, 214(L2):51-60.
- [2] KLAUS F, ABDULHAKIM A A. Manufacturing aspects of advanced polymer composites for automotive applications[J]. Applied Composite Materials, 2013, 20(2):107-128.
- [3] PANDYA S K, VEERRAJU C, NAIK N K. Hybrid composites made of carbon and glass woven fabrics under quasi-static loading[J]. Materials&Design, 2011, 32(7):4094-4099.
- [4] MAJID T D, HOOSHANG N, MOHAMMAD-HADI R. Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites[J]. Fibers and Polymers, 2015, 16(4):918-925.
- [5] YENTL Y, IGNASS V, LARISSA G. Recent advances in fibre-hybrid composites:materials selection, opportunities and applications[J]. International Materials Reviews, 2019, 64(4):181-215.
- [6] ZHENG Y Y, SUN Y, LI L, et al. Tensile response of carbon-aramid hybrid 3D braided composites[J]. Materials&Design, 2017, 116:246-252.
- [7] PRASAD V V, TALUPULA S. A review on reinforcement of basalt and aramid(Kevlar 129)fibers[J]. Materials Today:Proceedings, 2018, 5(2):5993-5998.
- [8] SAFRI S N A, SULTAN M T H, JAWAID M, et al. Impact behaviour of hybrid composites for structural applications:A review[J]. Composites Part B:Engineering, 2018, 133:112-121.
- [9] YENTL S, LARISSA G, IGNAAS V. Fibre hybridisation in polymer composites:A review[J]. Composites Part A, 2014, 67:181-200.
- [10] BUNSELL A R, HARRIS B. Hybrid carbon and glass fibre composites[J]. Composites, 1974, 5(4):157-164.
- [11]杨莉,陈缘,丁峰,等.混杂比对交织芳纶碳纤维复合材料力学性能的影响[J].中国塑料, 2021, 35(5):7.
- [12] WANG M, PAN Z, WU Z Y, et al. Effect of carbon/Kevlar asymmetric hybridization ratio on the low-velocity impact response of plain woven laminates[J]. Composite Structures, 2021, 276.
- [13]鲍子贺,牛一凡,严炎,等.混杂纤维复合材料力学性能及其低速冲击性能研究[J].塑料工业, 2018, 46(8):80-84.
- [14] WAN Y Z, CHEN G C, HUANG Y, et al. Characterization of threedimensional braided carbon/Kevlar hybrid composites for orthopedic usage[J]. Materials Science&Engineering A, 2005, 398(1-2):227-232.
- [15] LEE Y S, KANG K H, PARK O. Response of hybrid laminated composite plates under low-velocity impact[J]. Computers and Structures,1997, 65(6):965-974.
- [16] GRUJICIC M, PANDURANGAN B, KOUDELA K, et al. A computational analysis of the ballistic performance of light-weight hybrid composite armors[J]. Applied Surface Science, 2006, 253(2):730-745.
- [17] JUNHS. Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers[J]. Composites, Part B Engineering, 2015, 79:61-66.
- [18] MAROM G, DRUKKER E, WEINBERG A, et al. Impact behaviour of carbon/Kevlar hybrid composites[J]. Composites, 1986, 17(2):150-153.
- [19]史宝会.混杂复合材料低速冲击力学性能实验研究[D].天津:天津工业大学, 2016.
- [20]田书全.碳—芳纶混杂二维编织复合材料冲击后疲劳性能实验研究[D].天津:天津工业大学, 2018.
- [21] KARDIR B. Three-dimensional braiding for composites:A review[J]. Textile Research Journal, 2013, 83(13):1414-1436.
- [22] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J].Composites Part A:Applied Science and Manufacturing, 1999, 30(12):1445-1461.
- [23] WAN Y Z, WANG Y L, HE F, et al. Mechanical performance of hybrid bismaleimide composites reinforced with three-dimensional braided carbon and Kevlar fabrics[J]. Composites Part A:Applied Science and Manufacturing, 2006, 38(2):495-504.
- [24]谷李华.三维编织C/K/EP混杂复合材料性能研究[D].天津:天津大学, 2005.
- [25] SOHAIL A, ZHENG X T, YAN L L, et al. Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites[J].Composites Science and Technology, 2020, 199.
- [26] WU L W, WANG W, QIAN J, et al. Illustrating hybrid effect and damage evolution of carbon/aramid braided composite under low-velocity impact[J]. Composite Structures, 2020, 245.
- [27] WANG C Z, SU D D, XIE Z, et al. Low-velocity impact response of3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres[J]. Polymer Test, 2021, 101.
- [28] JEREMY G, AARAN J, MOHAMMD M, et al. Low velocity impact of combination Kevlar/carbon fiber sandwich composites[J]. Composite Structures, 2004, 69(4):396-406.
- [29] BASHA M, WAGIH A, MELAIBARI A, et al. On the impact damage resistance and tolerance improvement of hybrid CFRP/Kevlar sandwich composites[J]. Microporous and Mesoporous Materials, 2022, 333.
- [30] BEHNIA S, DAGHIGH V, NIKBIN K, et al. Influence of stacking sequence and notch angle on the charpy impact behavior of hybrid composites[J]. Mechanics of Composite Materials, 2016, 52(4):489-496.
- [31] WAGIH A, SEBAEY T, YUDHANTO A, et al. Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites[J]. Composite Structures, 2020, 239(C):112022.
- [32] JANG K K, MAN L S. Impact and delamination failure of woven-fabric composites[J]. Composites Science and Technology, 2000, 60(5):745-761.
- [33] SANCHEZ-SAEZ S, BARBERO E, ZAERA R, et al. Compression after impact of thin composite laminates[J]. Composites Science and Technology, 2005, 65(13):1911-1919.
- [34] HAZELL P J, KISTER G, STENNETT C, et al. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere[J].Composites Part A:Applied Science and Manufacturing, 2008, 39(5):866-874.
- [35] KEISUKE F, MOTOKAZU A, NORIYUKI K, et al. Impact perforation behavior of CFRPs using high-velocity steel sphere[J]. International Journal of Impact Engineering, 2002, 27(5):497-508.
- [36] YASUHIRO T, MOTOKAZU A, KEISUKE F, et al. Fracture behavior of CFRPs impacted by relatively high-velocity steel sphere[J]. International Journal of Impact Engineering, 2003, 28(6):627-642.
- [37] HAMMOND R, PROUD W, GOLDREIN H T, et al. High-resolution optical study of the impact of carbon-fibre reinforced polymers with different lay-ups[J]. International Journal of Impact Engineering, 2004, 30(1):69-86.
- [38] HOSUR M V, VAIDYA U K, ULVEN C, et al. Performance of stitched/unstitched woven carbon/epoxy composites under high velocity impact loading[J]. Composite Structures, 2003, 64(3):455-466.
- [39] DARREN M W, EMMA A, TAYLOR R A C. Numerical simulation and experimental charcterisation of direct hypervelocity impact on a spacecraft hybrid carbon fibre/Kevlar composite structure[J]. International Journal of Impact Engineering, 2003, 29(1-10):779-790.