生物基PTT合成及非等温结晶动力学研究Synthesis and Non-Isothermal Crystallization Kinetics of Bio-Based PTT
董海良,杨新华,王凯
DONG Hai-liang,YANG Xin-hua,WANG Kai
摘要(Abstract):
以精对苯二甲酸(PTA)、生物基1,3-丙二醇(1,3-PDO)为原料,通过直接酯化法缩聚工艺路线制备了生物基聚对苯二甲酸丙二醇酯(PTT)。使用核磁共振氢谱仪分析PTT的结构,借助乌氏黏度计和差示扫描量热仪测试了PTT的特性黏度和非等温结晶性能,并采用Jeziorny法研究了PTT的非等温结晶动力学。结果表明:当缩聚温度为260℃时,PTT的特性黏度达到1.04 dL/g,之后随缩聚温度的提高,特性黏度下降;核磁结构分析证明成功制备了PTT聚合物;非等温结晶动力学常数随降温速率的增大而增大,半结晶时间随降温速率的增大而降低。
Bio-based polytrimethylene terephthalate(PTT) was prepared by esterification polycondensation process using terephthalic acid(PTA) and bio-based 1,3-propanediol(1,3-PDO) as raw materials. The structure of PTT was analyzed by nuclear magnetic resonance hydrogen spectroscopy, the intrinsic viscosity was measured with an Ubbelohde viscometer, and non-isothermal crystallization properties of PTT were measured by differential scanning calorimetry, and the non-isothermal crystallization kinetics of PTT was studied by Jeziorny method. The results show that the intrinsic viscosity of PTT reaches 1.04 dL/g when the polycondensation temperature is 260 ℃, after that, with the increase of polycondensation temperature, the intrinsic viscosity decreases. The nuclear magnetic resonance proves that PTT polymer is successfully prepared. The kinetic constants the non-isothermal crystallization increases with the enhancement of cooling rate, and the half-time of crystallization decreases with the increase of cooling rate.
关键词(KeyWords):
聚对苯二甲酸丙二醇酯;合成;非等温结晶动力学
polytrimethyene terephthalate;synthesis;non-isothermal crystallization kinetics
基金项目(Foundation): 萧山区领军型创新创业团队项目(2020503)
作者(Author):
董海良,杨新华,王凯
DONG Hai-liang,YANG Xin-hua,WANG Kai
DOI: 10.16090/j.cnki.hcxw.2022.07.005
参考文献(References):
- [1]魏高富,顾利霞,戴志彬,等.聚对苯二甲酸丙二酯研究进展[J].合成纤维, 2005, 34(2):1-6, 22.
- [2]张紫艳,沈兰萍. PET、PBT和PTT纤维的性能及应用概述[J].山东纺织科技, 2018, 59(3):54-56.
- [3]汪一栋,卢新宇,王春燕,等. PTT/PET自卷曲复合纤维的工艺性能合[J].合成纤维, 2020, 49(4):8-10.
- [4]王少博,肖阳,黄鑫,等.生物基聚对苯二甲酸丙二醇酯纤维制备技术的研究进展[J].纺织学报, 2021, 42(4):16-25.
- [5] WU J, SCHULTZ J M, SAMON J M, et al. In situ study of structure development during continuous hot drawing of poly(trimethylene terephthalate)fibers by simultaneous synchrotron small-and wide-angle X-ray scattering[J]. Polymer, 2001, 42(16):7161-7170.
- [6]陈家鑫,陈延明,王立岩,等. CHDM改性PTT共聚酯非等温结晶动力学研究[J].合成纤维工业, 2021, 44(4):32-37.
- [7]翟桂法,陈延明,王立岩,等.异山梨醇改性PTT共聚酯的合成及其非等温结晶动力学研究[J].合成纤维工业, 2022, 45(1):25-30.
- [8]陈咏,王晶晶,王朝生,等.生物基1,3-丙二醇所含杂质对PTT聚合产物的影响[J].合成纤维, 2020, 49(8):1-5, 24.
- [9] JIN P, LI S, LU S, et al. Improved 1,3-propanediol production with hemicellulosic hydrolysates(corn straw)as cosubstrate:impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation[J]. Bioresource Technology, 2011, 102(2):1815-1821.
- [10]张丹,姚洁,王越,等.聚对苯二甲酸乙二醇酯合成的研究进展[J].现代化工, 2006(S1):80-83.
- [11]李梦蝶,翟刚,贾冰莹,等.聚对苯二甲酸丙二醇酯合成研究进展[J].合成化学, 2020, 28(12):1089-1097.
- [12]高庆龙,朱志庆,沈卫华,等. Ti-Mg复合催化剂合成聚对苯二甲酸1,3-丙二醇酯[J].应用化工, 2019, 48(11):2538-2545.
- [13]侯翠灵,王华平,张玉梅.聚对苯二甲酸丙二醇酯的非等温结晶动力学研究[J].合成纤维, 2006, 35(1):6-9.
- [14]陈国康,顾利霞.聚对苯二甲酸丙二醇酯树脂的结晶特性和结晶动力学[J].高分子材料科学与工程, 2001, 17(1):141-145.