合成纤维

2022, v.51;No.405(11) 44-50

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于Mask R-CNN的碳纤维复合材料的电性能研究
Research on the Electrical Properties of Carbon Fiber Reinforced Composites Based on Mask R-CNN

胡海燕,张娟娟,宋圭辰,李硕,刘昱萌,刘斌
HU Hai-yan,ZHANG Juan-juan,SONG Gui-chen,LI Shuo,LIU Yu-men,LIU Bin

摘要(Abstract):

扫描电子显微镜(SEM)可以有效地观测到碳纤维复合材料(CFRP)中碳纤维(CF)的形态和分布,但是对CF进行定性观察对改善CFPR电性能的贡献是有限的。在Mask R-CNN的基础上提出了SoftMask R-CNN来实现CF的SEM图像自动分割,进行CF分布的评估,研究CF分布对CFRP电性能的影响。试验结果表明:Soft-Mask R-CNN在SEM图像上的平均准确率和交并比分别为86.9%、90.7%;Soft-Mask R-CNN在不同的SEM放大条件下具有稳定的分割结果;Soft-Mask R-CNN对CF的SEM图像进行实时分割满足了对连续SEM图像观测的需求,表明CF分布可以改善CFRP的电性能。
Scanning electron microscope(SEM) can effectively observe the morphology and distribution of carbon fibers(CF) in carbon fiber reinforced composite materials(CFRP), but the contribution of qualitative observation of CF to improving the electrical properties of CFPR is limited. Therefore, on the basis of Mask R-CNN, Soft-Mask R-CNN is proposed to realize automatic segmentation of CF SEM images, evaluate CF distribution, and study the influence of CF distribution on the electrical performance of CFRP. Experimental results show that the average accuracy and intersection ratio of Soft-Mask R-CNN on SEM images are86.9% and 90.7% respectively; Soft-Mask R-CNN has stable segmentation results under different SEM magnification conditions; Soft-Mask R-CNN's real-time segmentation of CF SEM images meets the demand for continuous SEM image observation, indicating that CF distribution can improve the electrical performance of CFRP.

关键词(KeyWords): 碳纤维复合材料;碳纤维分布;Mask R-CNN
carbon fiber reinforced composite material;carbon fiber distribution;Mask R-CNN

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(61871260)

作者(Author): 胡海燕,张娟娟,宋圭辰,李硕,刘昱萌,刘斌
HU Hai-yan,ZHANG Juan-juan,SONG Gui-chen,LI Shuo,LIU Yu-men,LIU Bin

DOI: 10.16090/j.cnki.hcxw.2022.11.024

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享